Gonnardite

Last updated
Gonnardite
Gonnardite.jpg
Gonnardite from the Bundoora Quarry, Victoria, Australia. Specimen size 4.9 cm
General
Category Tectosilicate
Formula
(repeating unit)
(Na,Ca)2(Si,Al)5O10·3H2O
IMA symbol Gon [1]
Strunz classification 9.GA.05 (10 ed)
8/J.21-40 (8 ed)
Dana classification77.1.5.7
Crystal system Tetragonal
Crystal class Scalenohedral (42m)
H-M symbol: (4 2m)
Space group I42d
Unit cell a = 13.38
c = 6.66 [Å]; Z = 2
Identification
ColorColorless, white, yellow or pink to salmon orange
Crystal habit Radiating fibrous; massive
Mohs scale hardness4 to 5
Luster Vitreous to silky or dull
Streak White
Diaphaneity Translucent
Specific gravity 2.21 to 2.36
Optical propertiesBiaxial (+)
Refractive index nα = 1.514, nβ = 1.515, nγ = 1.520
Birefringence δ = 0.006
2V angle Measured, 52°
References [2] [3] [4] [5]

Gonnardite is a comparatively rare, fibrous zeolite, natrolite subgroup. Older papers claim that a complete solid solution exists between tetranatrolite and gonnardite, but tetranatrolite was discredited as a separate species in 1999. [6] A series, based on the disorder of the silicon-aluminum in the framework, appears to exist between Na-rich gonnardite and natrolite, Na2(Si3Al2)O10·2H2O. [7]

Contents

Gonnardite was named in 1896 after Ferdinand Pierre Joseph Gonnard [8] (1833–1923), who was Professor of Mining Engineering at the University of Lyon, France.

Crystallography

Orthorhombic-bipyramidal class 2/m 2/m 2/m and tetragonal-scalenoidal class 42m (orthorhombic with a very close to b, or tetragonal with a equal to b).
Unit Cell Parameters: a = b = 13.21 Å, c = 6.622 Å, Z = 2 [3] [4] [9]
Space Group: I42d

Crystal habit

Crystals are prismatic, bounded by {110} and {111} as well as {100} and {001}, [7] and gonnardite also occurs as radial hemispheres. Commonly found as zoned prisms or aggregates with thomsonite, natrolite and paranatrolite. [7]

Structure

Gonnardite is a tectosilicate belonging to the natrolite group. The natrolite minerals are composed of chains of AlO4 and SiO4 tetrahedra that link to form frameworks. As with all zeolites, there are channels within the framework, and for the natrolite minerals the channels are occupied by polyhedra containing sodium, calcium or barium, together with oxygen and water. [10] Gonnardite has the same framework structure as natrolite, but a disordered Si, Al distribution on the tetrahedral sites. [9] Some of the water sites in the disordered natrolite structure of gonnardite are empty. [7]

Environment

Gonnardite has been found in silica-poor volcanics and pegmatites. It occurs with thomsonite and natrolite in vesicles in the volcanic rock of The Nut, near Stanley, Tasmania, Australia, intergrown with natrolite at Don Hill, Tasmania and in drill holes with chabazite and calcite near Guildford, Tasmania. [11] It is also found in nepheline-syenite in the Grenville Geological Province, which is part of the Canadian Shield. [12] The type locality (the place where the mineral was first described) is La Chaux de Bergonne, Gignat, Saint-Germain-Lembron, Puy-de-Dôme, Auvergne, France, and type material from this locality is held at the Natural History Museum, London, England, registration number BM.1930,166.

Related Research Articles

<span class="mw-page-title-main">Strontianite</span> Rare carbonate mineral and raw material for the extraction of strontium

Strontianite (SrCO3) is an important raw material for the extraction of strontium. It is a rare carbonate mineral and one of only a few strontium minerals. It is a member of the aragonite group.

Zeolite is a family of several microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula Mn+
1/n
(AlO
2
)
(SiO
2
)
x
・yH
2
O
where Mn+
1/n
is either a metal ion or H+. These positive ions can be exchanged for others in a contacting electrolyte solution. H+
exchanged zeolites are particularly useful as solid acid catalysts.

<span class="mw-page-title-main">Sekaninaite</span> Mg, Fe, Al cyclosilicate mineral

Sekaninaite ((Fe+2,Mg)2Al4Si5O18) is a silicate mineral, the iron-rich analogue of cordierite.

<span class="mw-page-title-main">Cristobalite</span> Silica mineral, polymorph of quartz

Cristobalite is a mineral polymorph of silica that is formed at very high temperatures. It has the same chemical formula as quartz, SiO2, but a distinct crystal structure. Both quartz and cristobalite are polymorphs with all the members of the quartz group, which also include coesite, tridymite and stishovite. It is named after Cerro San Cristóbal in Pachuca Municipality, Hidalgo, Mexico.

<span class="mw-page-title-main">Stilbite</span>

Stilbite is the name of a series of tectosilicate minerals of the zeolite group. Prior to 1997, stilbite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named:

<span class="mw-page-title-main">Natrolite</span> Zeolite mineral

Natrolite is a tectosilicate mineral species belonging to the zeolite group. It is a hydrated sodium and aluminium silicate with the formula Na2Al2Si3O10·2H2O. The type locality is Hohentwiel, Hegau, Germany.

<span class="mw-page-title-main">Scolecite</span>

Scolecite is a tectosilicate mineral belonging to the zeolite group; it is a hydrated calcium silicate, CaAl2Si3O10·3H2O. Only minor amounts of sodium and traces of potassium substitute for calcium. There is an absence of barium, strontium, iron and magnesium. Scolecite is isostructural (having the same structure) with the sodium-calcium zeolite mesolite and the sodium zeolite natrolite, but it does not form a continuous chemical series with either of them. It was described in 1813, and named from the Greek word, σκώληξ (sko-lecks) = "worm" because of its reaction to the blowpipe flame.

<span class="mw-page-title-main">Gmelinite</span> Zeolite mineral

Gmelinite-Na is one of the rarer zeolites but the most common member of the gmelinite series, gmelinite-Ca, gmelinite-K and gmelinite-Na. It is closely related to the very similar mineral chabazite. Gmelinite was named as a single species in 1825 after Christian Gottlob Gmelin (1792–1860) professor of chemistry and mineralogist from Tübingen, Germany, and in 1997 it was raised to the status of a series.
Gmelinite-Na has been synthesised from Na-bearing aluminosilicate gels. The naturally occurring mineral forms striking crystals, shallow, six sided double pyramids, which can be colorless, white, pale yellow, greenish, orange, pink, and red. They have been compared to an angular flying saucer.

<span class="mw-page-title-main">Todorokite</span> Hydrous manganese oxide mineral

Todorokite is a complex hydrous manganese oxide mineral with generic chemical formula (Na,Ca,K,Ba,Sr)
1-x
(Mn,Mg,Al)
6
O
12
·3-4H
2
O
. It was named in 1934 for the type locality, the Todoroki mine, Hokkaido, Japan. It belongs to the prismatic class 2/m of the monoclinic crystal system, but the angle β between the a and c axes is close to 90°, making it seem orthorhombic. It is a brown to black mineral which occurs in massive or tuberose forms. It is quite soft with a Mohs hardness of 1.5, and a specific gravity of 3.49 – 3.82. It is a component of deep ocean basin manganese nodules.

<span class="mw-page-title-main">Thomsonite</span> Thomsonite series of the zeolite group

Thomsonite is the name of a series of tecto-silicate minerals of the zeolite group. Prior to 1997, thomsonite was recognized as a mineral species, but a reclassification in 1997 by the International Mineralogical Association changed it to a series name, with the mineral species being named thomsonite-Ca and thomsonite-Sr. Thomsonite-Ca, by far the more common of the two, is a hydrous sodium, calcium and aluminium silicate, NaCa2Al5Si5O20·6H2O. Strontium can substitute for the calcium and the appropriate species name depends on the dominant element. The species are visually indistinguishable and the series name thomsonite is used whenever testing has not been performed. Globally, thomsonite is one of the rarer zeolites.

<span class="mw-page-title-main">Hauyne</span> Silicate mineral

Hauyne or haüyne, also called hauynite or haüynite, is a tectosilicate sulfate mineral with endmember formula Na3Ca(Si3Al3)O12(SO4). As much as 5 wt % K2O may be present, and also H2O and Cl. It is a feldspathoid and a member of the sodalite group. Hauyne was first described in 1807 from samples discovered in Vesuvian lavas in Monte Somma, Italy, and was named in 1807 by Brunn-Neergard for the French crystallographer René Just Haüy (1743–1822). It is sometimes used as a gemstone.

<span class="mw-page-title-main">Mesolite</span> Zeolite mineral

Mesolite is a tectosilicate mineral with formula Na2Ca2(Al2Si3O10)3·8H2O. It is a member of the zeolite group and is closely related to natrolite which it also resembles in appearance.

<span class="mw-page-title-main">Edingtonite</span> Zeolite mineral

Edingtonite is a white, gray, brown, colorless, pink or yellow zeolite mineral. Its chemical formula is BaAl2Si3O10·4H2O. It has varieties with tetragonal, orthorhombic or triclinic crystals.

<span class="mw-page-title-main">Parthéite</span>

Partheite or parthéite is a calcium aluminium silicate and a member of the zeolite group of minerals, a group of silicates with large open channels throughout the crystal structure, which allow passage of liquids and gasses through the mineral. It was first discovered in 1979 in rodingitic dikes in an ophiolite zone of the Taurus Mountains in southwest Turkey. The second discovery occurred in gabbro-pegmatites in the Ural Mountains, Russia. Since its discovery and naming, the chemical formula for partheite has been revised from CaAl2Si2O8·2H2O to include not only water but hydroxyl groups as well. The framework of the mineral is interrupted due to these hydroxyl groups attaching themselves to aluminum centered oxygen tetrahedra. This type of interrupted framework is known in only one other zeolite, the mineral roggianite. As a silicate based mineral with the properties of a zeolite, partheite was first described as zeolite-like in 1984 and listed as a zeolite in 1985. Partheite and lawsonite are polymorphs. Associated minerals include prehnite, thomsonite, augite, chlorite and tremolite.

<span class="mw-page-title-main">Lavendulan</span>

Lavendulan is an uncommon copper arsenate mineral, known for its characteristic intense electric blue colour. It belongs to the lavendulan group, which has four members:

<span class="mw-page-title-main">Vlasovite</span>

Vlasovite is a rare inosilicate (chain silicate) mineral with sodium and zirconium, with the chemical formula Na2ZrSi4O11. It was discovered in 1961 at Vavnbed Mountain in the Lovozero Massif, in the Northern Region of Russia. The researchers who first identified it, R P Tikhonenkova and M E Kazakova, named it for Kuzma Aleksevich Vlasov (1905–1964), a Russian mineralogist and geochemist who studied the Lovozero massif, and who was the founder of the Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare Elements, Moscow, Russia.

<span class="mw-page-title-main">Tuperssuatsiaite</span>

Tuperssuatsiaite is a rare clay mineral found in Greenland, Namibia and Brazil. It is a hydrated phyllosilicate of sodium and iron.

<span class="mw-page-title-main">Fluorellestadite</span> Nesosilicate mineral

Fluorellestadite is a rare nesosilicate of calcium, with sulfate and fluorine, with the chemical formula Ca10(SiO4)3(SO4)3F2. It is a member of the apatite group, and forms a series with hydroxylellestadite.

<span class="mw-page-title-main">Leifite</span>

Leifite is a rare tectosilicate. Tectosilicates are built on a framework of tetrahedra with silicon or aluminium at the centre and oxygen at the vertices; they include feldspars and zeolites, but leifite does not belong in either of these categories. It is a member of the leifite group, which includes telyushenkoite (Cs,Na,K)Na6(Be2Al3Si15O39) and eirikite KNa6Be2(Si15Al3)O39F2). Leifite was discovered in 1915, and named after Leif Ericson who was a Norse explorer who lived around 1000 AD, and was probably the first European to land in North America, nearly 500 years before Christopher Columbus. Eirikite was named in 2007 after Eirik Raude, or Erik the Red, (950–1003), who discovered Greenland and who was the father of Leif Ericson. The third mineral in the group, telyushenkoite, was discovered in 2001. It was not named after any of Leif Ericson's family members, but after a professor of geology in Turkmenistan.

<span class="mw-page-title-main">Carminite</span> Anhydrous arsenate mineral containing hydroxyl

Carminite (PbFe3+2(AsO4)2(OH)2) is an anhydrous arsenate mineral containing hydroxyl. It is a rare secondary mineral that is structurally related to palermoite (Li2SrAl4(PO4)4(OH)4). Sewardite (CaFe3+2(AsO4)2(OH)2) is an analogue of carminite, with calcium in sewardite in place of the lead in carminite. Mawbyite is a dimorph (same formula, different structure) of carminite; mawbyite is monoclinic and carminite is orthorhombic. It has a molar mass of 639.87 g. It was discovered in 1850 and named for the characteristic carmine colour.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. "Gonnardite".
  3. 1 2 "Gonnardite Mineral Data".
  4. 1 2 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Gonnardite" (PDF). Handbook of Mineralogy. Mineral Data Publishing. Retrieved 13 March 2022.
  5. Gaines et al (1997) Dana's New Mineralogy, Wiley
  6. American Mineralogist (1999) 84: 1445–1450
  7. 1 2 3 4 Tschernich, Zeolites of the World (1992) Geoscience Press, pages 215 to 225
  8. "Archived copy". Archived from the original on 2014-07-29. Retrieved 2010-03-30.{{cite web}}: CS1 maint: archived copy as title (link)
  9. 1 2 Mineralogical Magazine (1998) 62: 548
  10. American Mineralogist (1972) 77:685
  11. Australian Journal of Mineralogy (2004) 10-2: 59–72
  12. The Mineralogical Record 37-4: 285