Green strength, or handling strength, can be defined as the strength of a material as it is processed to form its final ultimate tensile strength. This strength is usually considerably lower than the final ultimate strength of a material. The term green strength is usually referenced when discussing non-metallic materials such as adhesives and elastomers (such as rubber). Recently,[ when? ] it has also been referenced in metallurgy applications such as powdered metallurgy.
A joint made through the use of an adhesive can be referred to as an adhesive joint or bond.
The green strength of adhesives is the early development of bond strength of an adhesive. It indicated "that the adhesive bond is strong enough to be handled a short time after the adherents are mated but much before full cure is obtained." Usually, this strength is significantly lower than the final curing strength. Most adhesives typically have an initial green strength and a final ultimate tensile strength listed for their application. For household adhesives, this data is usually reflected on the packaging. [1]
The best example of this is seen in typical epoxies from a local hardware stores. During curing, the epoxy will travel into an initial curing phase, also called "green phase", when it begins to gel. At that point, the epoxy is no longer workable and will move from being tacky to a firm rubber-like texture. While the epoxy is only partially cured at this point, it has formed a lower green strength. Normally, this process occurs within 30 minutes to 1 hour. At this time, the part in question can be handled, but cannot handle large loads or stress. It typically takes up to 24 hours for a standard epoxy to cure to its final and complete strength. [2] [3]
Temperature is an important factor in the time it takes for an adhesive to form the green strength. While this can vary from adhesive to adhesive, general speaking, heat can speed up the process to form the green strength and the overall curing time. Time-Temperature-Transformation Diagrams exist for various adhesives that relate the time and temperature to the state of the adhesive during curing. This allows for a proper understanding of when the green strength will be reached for an adhesive joint based on certain conditions. [1]
Mechanical testing can be used to verify the green strength of a material. This will allow the user the understand the amount of load that can be applied in the green phase before final cure. [1]
Tensile loading can be verified by various testing methods. Multiple ASTM specifications exist for the tensile testing of adhesives that are relatively easy to follow. Such tests include the process of attaching the adhesive to two adherents (typically wood or steel) then testing the joint with a pull-type test. One example is the use us ASTM Test Method D2095. In this test, two metal rod ends are polished so it contains no burrs that could affect the adhesive bond. It also machined so the surfaces are perfectly parallel. The rods are then butted against each with the adhesive joining them. As it cures and sets, the fulfillment of green strength can be tested by a pull test, putting the bond in full tension load. [1]
Shear loading can also be tested in respect to green strength. Most adhesive bonds used in design require the bond to typically be in a state of shear, not tensile. Because of this, it is very important to understand the shear loading of a joint in relation to its green strength and final strength. Just like in tensile loading, ASTM provides very specific testing methods for a joint in shear loading.
The standard lap shear specimen test is described in ASTM D1002. This test is the single common and discussed test method for adhesive bonds. In this method, the surface is prepped and cleaned for each specimen. The adhesive is then applied to the area that will be lapped. This lap length is generally 0.5" and the bond width is 1". The bond is then fixed and allowed to cure. For green strength testing, the fixture can be removed, at the appropriate time, and the specimen can be loaded in shear until it finally fails. This will verify the green strength of the material. [1]
Other testing, such as cleavage loading and peel test, can be used to determine both the green strength and final strength of a material. These are typically not reflected on the data sheet for standard adhesives, but can be used for testing of adhesives based on their applications in residential and commercial environments. [1]
In the elastomer industry, green strength describes the strength of an elastomer in an unvulcanized, uncured state. The most popular referenced type of elastomer is rubber.
For rubber composites, green strength is essential during formation and manufacturing of materials such as radial tires, tank tracks, etc. These rubbers must be stretched from one mill to another during processing to form the final, vulcanized product. Green strength allows these transfers without tearing or wrinkling the workpiece.
To improve the green strength of elastomers and prevent issues during forming, various additives and compounds are typically added to the composite. Also, fabrication and forming techniques have been modified to reduce the amount of stress on the material before it is vulcanized. These techniques are a pertinent component of the tire making industry because it is a process that requires much forming, stretching, and bending during fabrication before the final curing is complete. [4]
Green strength of metals is typically[ weasel words ] referenced in the field of powder metallurgy.
Powder metallurgy refers to the fabrication of materials or components from powders. In powder metallurgy, the initial green strength is formed during compacting and forming. Increased complexity of parts and geometry have created a need for a higher green strength during this process. [5]
There are several limitations that restrict the ability to increase green strength in powder metallurgy components. Characteristics such as particle size and compressibility pose limits on the final green strength. [5]
Various studies have been undertaken to improve the green strength of powder metallurgy. The use of advanced lubricants and the addition of high alloys have shown that it is possible to increase the green strength of these materials. [5]
Adhesive, also known as glue, cement, mucilage, or paste, is any non-metallic substance applied to one or both surfaces of two separate items that binds them together and resists their separation.
In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.
Fibre-reinforced plastic is a composite material made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon, aramid, or basalt. Rarely, other fibres such as paper, wood, boron, or asbestos have been used. The polymer is usually an epoxy, vinyl ester, or polyester thermosetting plastic, though phenol formaldehyde resins are still in use.
In chemistry and biology a cross-link is a bond or a short sequence of bonds that links one polymer chain to another. These links may take the form of covalent bonds or ionic bonds and the polymers can be either synthetic polymers or natural polymers.
Delamination is a mode of failure where a material fractures into layers. A variety of materials, including laminate composites and concrete, can fail by delamination. Processing can create layers in materials, such as steel formed by rolling and plastics and metals from 3D printing which can fail from layer separation. Also, surface coatings, such as paints and films, can delaminate from the coated substrate.
Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments and temperatures from −55 to 300 °C while still maintaining its useful properties. Due to these properties and its ease of manufacturing and shaping, silicone rubber can be found in a wide variety of products, including voltage line insulators; automotive applications; cooking, baking, and food storage products; apparel such as undergarments, sportswear, and footwear; electronics; medical devices and implants; and in home repair and hardware, in products such as silicone sealants.
Pneumatic tires are manufactured according to relatively standardized processes and machinery, in around 455 tire factories in the world. With over 1 billion tires manufactured worldwide annually, the tire industry is a major consumer of natural rubber. Tire factories start with bulk raw materials such as synthetic rubber, carbon black, and chemicals and produce numerous specialized components that are assembled and cured.
Wood glue is an adhesive used to tightly bond pieces of wood together. Many substances have been used as glues. Traditionally animal proteins like casein from milk or collagen from animal hides and bones were boiled down to make early glues. They worked by solidifying as they dried. Later, glues were made from plant starches like flour or potato starch. When combined with water and heated, the starch gelatinizes and forms a sticky paste as it dries. Plant-based glues were common for books and paper products, though they can break down more easily over time compared to animal-based glues. Examples of modern wood glues include polyvinyl acetate (PVA) and epoxy resins. Some resins used in producing composite wood products may contain formaldehyde. As of 2021, “the wood panel industry uses almost 95% of synthetic petroleum-derived thermosetting adhesives, mainly based on urea, phenol, and melamine, among others”.
Pressure-sensitive adhesive is a type of nonreactive adhesive which forms a bond when pressure is applied to bond the adhesive with a surface. No solvent, water, or heat is needed to activate the adhesive. It is used in pressure-sensitive tapes, labels, glue dots, stickers, sticky note pads, automobile trim, and a wide variety of other products.
Rubber Technology is the subject dealing with the transformation of rubbers or elastomers into useful products, such as automobile tires, rubber mats and, exercise rubber stretching bands. The materials includes latex, natural rubber, synthetic rubber and other polymeric materials, such as thermoplastic elastomers. Rubber processed through such methods are components of a wide range of items.
Redux is the generic name of a family of phenol–formaldehyde/polyvinyl–formal adhesives developed by Aero Research Limited (ARL) at Duxford, UK, in the 1940s, subsequently produced by Ciba (ARL). The brand name is now also used for a range of epoxy and bismaleimide adhesives manufactured by Hexcel. The name is a contraction of REsearch at DUXford.
Membrane roofing is a type of roofing system for buildings, RV's, Ponds and in some cases tanks. It is used to create a watertight covering to protect the interior of a building. Membrane roofs are most commonly made from synthetic rubber, thermoplastic, or modified bitumen. Membrane roofs are most commonly used in commercial application, though they are becoming increasingly common in residential application.
Rubber toughening is a process in which rubber nanoparticles are interspersed within a polymer matrix to increase the mechanical robustness, or toughness, of the material. By "toughening" a polymer it is meant that the ability of the polymeric substance to absorb energy and plastically deform without fracture is increased. Considering the significant advantages in mechanical properties that rubber toughening offers, most major thermoplastics are available in rubber-toughened versions; for many engineering applications, material toughness is a deciding factor in final material selection.
A pull-off test, also called stud pull test, is a type of test in which an adhesive connection is made between a stud and a carrier by using a glue, possibly an epoxy or polyester resin, that is stronger than the bond that needs to be tested. The force required to pull the stud from the surface, together with the carrier, is measured. Simple mechanical hand-operated loading equipment has been developed for this purpose. When higher accuracy is required, tests can be performed with more advanced equipment called a bond tester. A bond tester provides more control and possibly automation. Applying the glue automatically and curing with UV light is the next step in automation. This methodology can also be used to measure direct tensile strength or/and the bond strength between two different layers.
Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.
RTV silicone is a type of silicone rubber that cures at room temperature. It is available as a one-component product, or mixed from two components. Manufacturers provide it in a range of hardnesses from very soft to medium—usually from 15 to 40 Shore A. RTV silicones can be cured with a catalyst consisting of either platinum or a tin compound such as dibutyltin dilaurate. Applications include low-temperature over-molding, making molds for reproducing, and lens applications for some optically clear grades. It is also used widely in the automotive industry as an adhesive and sealant, for example to create gaskets in place.
Micronized rubber powder (MRP) is classified as fine, dry, powdered elastomeric crumb rubber in which a significant proportion of particles are less than 100 μm and free of foreign particulates. MRP particle size distributions typically range from 180 μm to 10 μm. Narrower distributions can be achieved depending on the classification technology.
Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.
Adhesive bonding is a process by which two members of equal or dissimilar composition are joined. It is used in place of, or to complement other joining methods such mechanical fasting by the use nails, rivets, screws or bolts and many welding processes. The use of adhesives provides many advantages over welding and mechanical fastening in steel construction; however, many challenges still exist that have made the use of adhesives in structural steel components very limited.
Solvent bonding is not a method of adhesive bonding, but rather a method of fusing two thermoplastic plastics. Application of a solvent to a thermoplastic material softens the polymer, and with applied pressure this results in polymer chain interdiffusion at the bonding junction. When the solvent evaporates, this leaves a fully consolidated bond-line. An advantage to solvent bonding versus other polymer joining methods is that bonding generally occurs below the glass transition temperature of the polymer.