Greenpeace Nordic

Last updated

Greenpeace Nordic
Type NGO
Purpose Environmentalism, peace
HeadquartersStockholm
Location
  • Hökens gata 2
Membership
private persons
Official languages
Danish, Finnish, Norwegian, Swedish
Executive Director
Mads Flarup Christensen
Parent organization
Greenpeace

Greenpeace Nordic is a regional branch of the non-governmental international environmental organization Greenpeace. Greenpeace Nordic is registered in Stockholm with offices also in Helsinki, Copenhagen and Oslo.

Contents

Climate change reports

The main worldwide Greenpeace energy revolution demands are: [1]

  1. Phase out all subsidies for fossil fuels and nuclear energy.
  2. Internalise external (social and environmental) costs through ‘cap and trade’ emissions trading.
  3. Mandate strict efficiency standards for all energy consuming appliances, buildings and vehicles.
  4. Establish legally binding targets for renewable energy and combined heat and power generation.
  5. Reform the electricity markets by guaranteeing priority access to the grid for renewable power generators.
  6. Provide defined and stable returns for investors, for example through feed-in tariff payments.
  7. Implement better labelling and disclosure mechanisms to provide more environmental product information.
  8. Increase research and development budgets for renewable energy and energy efficiency.

Finland

According to the Greenpeace Energy [R]evolution scenario for Finland in 2012, the final energy demand will decreases by 35% compared to current consumption by 2050. By 2050, 94% of the electricity produced in Finland will come from renewable energy sources. 'New' renewables – mainly wind and PV[ clarification needed ] – will contribute 48% of electricity generation. Already by 2020, the share of renewable electricity production will be 52% and 74% by 2030. The installed capacity of renewables will reach 21 GW in 2030 and 45 GW by 2050. [2] [3] Greenpeace is campaigning against E.ON nuclear project in northern Finland. Greenpeace Nordic activists intercepted a Shell-contracted icebreaker, the Nordica, in May 2012.

Sweden

According to Greenpeace Sweden, the nuclear accident at Japan's Fukushima Daiichi Nuclear Power Plant will also be seen as a turning point in world energy policy. Germany, Switzerland, and Italy decided to phase out existing reactors and Sweden started discussions about the future of nuclear. Environment minister Andreas Carlgren told in summer 2011: "We want Sweden to be the first country in the world to have an energy system based wholly on renewable energy." By Greenpeace the reduction of our greenhouse gas emissions significantly makes both environmental and economic sense. By 2050, Sweden's entire electricity demand will be produced from renewable sources. A capacity of 56,800 MW will produce 169 TWh/a renewable electricity in 2050. [4]

Related Research Articles

<span class="mw-page-title-main">Renewable energy in the European Union</span>

Renewable energy progress in the European Union (EU) is driven by the European Commission's 2023 revision of the Renewable Energy Directive, which raises the EU's binding renewable energy target for 2030 to at least 42.5%, up from the previous target of 32%. Effective since November 20, 2023, across all EU countries, this directive aligns with broader climate objectives, including reducing greenhouse gas emissions by at least 55% by 2030 and achieving climate neutrality by 2050. Additionally, the Energy 2020 strategy exceeded its goals, with the EU achieving a 22.1% share of renewable energy in 2020, surpassing the 20% target.

<span class="mw-page-title-main">Renewable energy in Germany</span>

Renewable energy in Germany is mainly based on wind and biomass, plus solar and hydro. Germany had the world's largest photovoltaic installed capacity until 2014, and as of 2023 it has over 82 GW. It is also the world's third country by installed total wind power capacity, 64 GW in 2021 and second for offshore wind, with over 7 GW. Germany has been called "the world's first major renewable energy economy".

<span class="mw-page-title-main">Energy policy of Australia</span> Overview of the energy policy of Australia

The energy policy of Australia is subject to the regulatory and fiscal influence of all three levels of government in Australia, although only the State and Federal levels determine policy for primary industries such as coal. Federal policies for energy in Australia continue to support the coal mining and natural gas industries through subsidies for fossil fuel use and production. Australia is the 10th most coal-dependent country in the world. Coal and natural gas, along with oil-based products, are currently the primary sources of Australian energy usage and the coal industry produces over 30% of Australia's total greenhouse gas emissions. In 2018 Australia was the 8th highest emitter of greenhouse gases per capita in the world.

<span class="mw-page-title-main">Renewable energy commercialization</span> Deployment of technologies harnessing easily replenished natural resources

Renewable energy commercialization involves the deployment of three generations of renewable energy technologies dating back more than 100 years. First-generation technologies, which are already mature and economically competitive, include biomass, hydroelectricity, geothermal power and heat. Second-generation technologies are market-ready and are being deployed at the present time; they include solar heating, photovoltaics, wind power, solar thermal power stations, and modern forms of bioenergy. Third-generation technologies require continued R&D efforts in order to make large contributions on a global scale and include advanced biomass gasification, hot-dry-rock geothermal power, and ocean energy. In 2019, nearly 75% of new installed electricity generation capacity used renewable energy and the International Energy Agency (IEA) has predicted that by 2025, renewable capacity will meet 35% of global power generation.

<span class="mw-page-title-main">Fossil fuel phase-out</span> Gradual reduction of the use and production of fossil fuels

Fossil fuel phase-out is the gradual reduction of the use and production of fossil fuels to zero, to reduce deaths and illness from air pollution, limit climate change, and strengthen energy independence. It is part of the ongoing renewable energy transition, but is being hindered by fossil fuel subsidies.

<span class="mw-page-title-main">Renewable energy in Finland</span> Overview of renewable energy in Finland

Renewable energy in Finland increased from 34% of the total final energy consumption (TFEC) in 2011 to 48% by the end of 2021, primarily driven by bioenergy (38%), hydroelectric power (6.1%), and wind energy (3.3%). In 2021, renewables covered 53% of heating and cooling, 39% of electricity generation, and 20% of the transport sector. By 2020, this growth positioned Finland as having the third highest share of renewables in TFEC among International Energy Agency (IEA) member countries.

<span class="mw-page-title-main">Wind power in Sweden</span>

Sweden consumes about 150 terawatt hours of electricity per year, of which about 27.1 TW·h (19.0%) was generated from domestic wind power resources in 2021, up from 2.4% in 2010 and 0.3% in 2000.

Nordic electricity market is a common market for electricity in the Nordic countries. It is one of the first free electric-energy markets in Europe and is traded in NASDAQ OMX Commodities Europe and Nord Pool Spot. In 2003, the largest market shares were as follows: Vattenfall 17%, Fortum 14.1%, Statkraft 8.9%, E.on 7.5%, Elsam 5%, Pohjolan Voima 5%. Other producers had 42.5% market share.

<span class="mw-page-title-main">Energy in Finland</span> Overview of the production, consumption, import and export of energy and electricity in Finland

Energy in Finland describes energy and electricity production, consumption and import in Finland. Energy policy of Finland describes the politics of Finland related to energy. Electricity sector in Finland is the main article regarding electricity in Finland.

<span class="mw-page-title-main">Energy in Switzerland</span> Overview of energy in Switzerland

Energy in Switzerland is transitioning towards sustainability, targeting net zero emissions by 2050 and a 50% reduction in greenhouse gas emissions by 2030.

The electricity sector in Finland relies on nuclear power, renewable energy, cogeneration and electricity import from neighboring countries. Finland has the highest per-capita electricity consumption in the EU. Co-generation of heat and electricity for industry process heat and district heating is common. Finland is one of the last countries in the world still burning peat.

<span class="mw-page-title-main">Coal phase-out</span> Environmental policy intended to stop using coal

Coal phase-out is an environmental policy intended to stop using the combustion of coal in coal-burning power plants, and is part of fossil fuel phase-out. Coal is the most carbon-intensive fossil fuel, therefore phasing it out is critical to limiting climate change as laid out in the Paris Climate Agreement. The International Energy Agency (IEA) estimates that coal is responsible for over 30% of the global average temperature increase above pre-industrial levels. Some countries in the Powering Past Coal Alliance have already stopped.

<span class="mw-page-title-main">Energy in Singapore</span> Heating, cooling, and industrial power demand in Singapore

Energy in Singapore describes energy related issues in Singapore, which is a developed country located in Southeast Asia. Energy exports to others are about three times the primary energy supplied in the country itself. Additionally, oil imports in relation to the population demands of the country itself are concerningly high.

South Africa has a large energy sector, being the third-largest economy in Africa. The country consumed 227 TWh of electricity in 2018. The vast majority of South Africa's electricity was produced from coal, with the fuel responsible for 88% of production in 2017. South Africa is the 7th largest coal producer in the world. As of July 2018, South Africa had a coal power generation capacity of 39 gigawatts (GW). South Africa is the world's 14th largest emitter of greenhouse gases. South Africa is planning to shift away from coal in the electricity sector and the country produces the most solar and wind energy by terawatt-hours in Africa. The country aims to decommission 34 GW of coal-fired power capacity by 2050. It also aims to build at least 20 GW of renewable power generation capacity by 2030. South Africa aims to generate 77,834 megawatts (MW) of electricity by 2030, with new capacity coming significantly from renewable sources to meet emission reduction targets. Through its goals stated in the Integrated Resource Plan, it announced the Renewable Energy Independent Power Producer Procurement Programme, which aims to increase renewable power generation through private sector investment.

<span class="mw-page-title-main">Energy in Sweden</span> Overview of energy use in Sweden

Energy in Sweden describes energy and electricity production, consumption and import in Sweden. Electricity sector in Sweden is the main article of electricity in Sweden. The Swedish climate bill of February 2017 aims to make Sweden carbon neutral by 2045. The Swedish target is to decline emission of climate gases 63% from 1990 to 2030 and international transportation excluding foreign flights 70%. By 2014 just over half of the country's total final energy consumption in electricity, heating and cooling and transport combined was provided by renewables, the highest share amongst the then 28 EU member countries. About a third of Sweden's electricity is generated by nuclear power. In generating a year's worth of this energy, Swedes generate about 4 tonnes of CO2 emissions each. Since 2010, sustainability measures have reduced total emissions even as the population has increased.

<span class="mw-page-title-main">Energy in Spain</span> Overview of the production, consumption, import and export of energy and electricity in Spain

Primary energy consumption in Spain in 2015 was mainly composed of fossil fuels. The largest sources are petroleum (42.3%), natural gas (19.8%) and coal (11.6%). The remaining 26.3% is accounted for by nuclear energy (12%) and different renewable energy sources (14.3%). Domestic production of primary energy includes nuclear (44,8%), solar, wind and geothermal (22,4%), biomass and waste (21,1%), hydropower (7,2%) and fossil (4,5%).

<span class="mw-page-title-main">Energy policy of Finland</span> Overview of the energy policy of Finland

Energy policy of Finland describes the politics of Finland related to energy. Energy in Finland describes energy and electricity production, consumption and import in Finland. Electricity sector in Finland is the main article of electricity in Finland.

<i>Energiewende</i> Ongoing energy transition in Germany

The Energiewende is the ongoing transition by Germany to a low carbon, environmentally sound, reliable, and affordable energy supply. The new system intends to rely heavily on renewable energy, energy efficiency, and energy demand management.

<span class="mw-page-title-main">Renewable energy in Turkey</span>

Renewables supply a quarter of energy in Turkey, including heat and electricity. Some houses have rooftop solar water heating, and hot water from underground warms many spas and greenhouses. In parts of the west hot rocks are shallow enough to generate electricity as well as heat. Wind turbines, also mainly near western cities and industry, generate a tenth of Turkey’s electricity. Hydropower, mostly from dams in the east, is the only modern renewable energy which is fully exploited. Hydropower averages about a fifth of the country's electricity, but much less in drought years. Apart from wind and hydro, other renewables; such as geothermal, solar and biogas; together generated almost a tenth of Turkey’s electricity in 2022. Türkiye has ranked 5th in Europe and 12th in the world in terms of installed capacity in renewable energy. The share of renewables in Türkiye’s installed power reached to 54% at the end of 2022.

<span class="mw-page-title-main">World energy supply and consumption</span> Global production and usage of energy

World energy supply and consumption refers to the global primary energy production, energy conversion and trade, and final consumption of energy. Energy can be used in various different forms, as processed fuels or electricity, or for various different purposes, like for transportation or electricity generation. Energy production and consumption are an important part of the economy. A serious problem concerning energy production and consumption is greenhouse gas emissions. Of about 50 billion tonnes worldwide annual total greenhouse gas emissions, 36 billion tonnes of carbon dioxide was emitted due to energy in 2021.

References

  1. World Report 2012 page 21
  2. Finland report Greenpeace 12 November 2012
  3. Greenpeace haluaa Suomeen energiavallankumouksen yle 12 November 2012
  4. Sweden report Archived 5 March 2016 at the Wayback Machine Greenpeace 12 November 2012