Greyout

Last updated
Simulated stages of a greyout. Grey out illustration.jpg
Simulated stages of a greyout.

A greyout is a transient loss of vision characterized by a perceived dimming of light and color, sometimes accompanied by a loss of peripheral vision. [1] It is a precursor to fainting or a blackout and is caused by hypoxia (low brain oxygen level), often due to a loss of blood pressure.

Greyouts have a variety of possible causes:


Possible symptoms include:


Recovery is usually rapid. A greyout can be readily reversed by lying down as the cardiovascular system does not need to work against gravity for blood to reach the brain.

A greyout may be experienced by aircraft pilots pulling high positive g-forces as when pulling up into a loop or a tight turn, which forces blood to the lower extremities of the body and lowers blood pressure in the brain. [2] This is the reverse of a redout, or a reddening of the vision, which is the result of negative g-forces caused by performing an outside loop, that is by pushing the nose of the aircraft down. Redouts are potentially dangerous and can cause retinal damage and hemorrhagic stroke. Pilots of high performance aircraft can increase their resistance to greyouts by using a g-suit, which controls the pooling of blood in the lower limbs, but there is no suit yet capable of controlling a redout. In both cases, symptoms may be remedied immediately by easing pressure on the flight controls. Continued or heavy g-force will rapidly progress to g-LOC (g-force induced Loss of Consciousness). Untrained individuals can withstand approximately 4g, while fighter pilots with g-suits are trained to perform 9g maneuvers.

Surprisingly, even during a heavy greyout, where the visual system is severely impaired, pilots can still hear, feel, and speak. [3] Complete greyout and loss of consciousness are separate events.

Another common occurrence of greyouts is in roller coaster riders.[ citation needed ] Many roller coasters put riders through positive g-forces, [4] particularly in vertical loops and helices. Roller coasters are unlikely to have high enough negative g-forces to induce redouts, as most low-g elements are designed to simulate weightlessness.

See also

Notes

  1. Mike Leahy; Zeron Gibson (2005-08-25). "G-Force Diary". BBC/Open University. Archived from the original on 2022-12-18. Retrieved 2009-11-20.
  2. Braithwaite MG, Durnford SJ, Crowley JS, Rosado NR, Albano JP. "Spatial disorientation in U.S. Army rotary-wing operations." Aviation, Space, and Environmental Medicine 69(11):1031-7 (November 1998).
  3. Eoin Harvey, MD, Physiological Effects of Positive G Forces, British Aerobatic Association, archived from the original on 2012-07-22, retrieved 2009-11-20
  4. Douglas H. Smith; David F. Meaney (October 2002), "Roller Coasters, G Forces, and Brain Trauma: On the Wrong Track?", Journal of Neurotrauma, 19 (10): 1117–1120, doi:10.1089/08977150260337921, PMID   12427321

Related Research Articles

<span class="mw-page-title-main">Tunnel vision</span> Medical condition

Tunnel vision is the loss of peripheral vision with retention of central vision, resulting in a constricted circular tunnel-like field of vision.

Hyperventilation is irregular breathing that occurs when the rate or tidal volume of breathing eliminates more carbon dioxide than the body can produce. This leads to hypocapnia, a reduced concentration of carbon dioxide dissolved in the blood. The body normally attempts to compensate for this homeostatically, but if this fails or is overridden, the blood pH will rise, leading to respiratory alkalosis. This increases the affinity of oxygen to hemoglobin and makes it harder for oxygen to be released into body tissues from the blood. The symptoms of respiratory alkalosis include dizziness, tingling in the lips, hands, or feet, headache, weakness, fainting, and seizures. In extreme cases, it may cause carpopedal spasms, a flapping and contraction of the hands and feet.

g-force Term for accelerations felt as weight in multiples of standard gravity

The g-force or gravitational force equivalent is a mass-specific force, expressed in units of standard gravity . It is used for sustained accelerations, that cause a perception of weight. For example, an object at rest on Earth's surface is subject to 1 g, equaling the conventional value of gravitational acceleration on Earth, about 9.8 m/s2. More transient acceleration, accompanied with significant jerk, is called shock.

g-suit Flight suit which controls blood-flow during high acceleration

A g-suit, or anti-g suit, is a flight suit worn by aviators and astronauts who are subject to high levels of acceleration force (g). It is designed to prevent a black-out and g-LOC caused by the blood pooling in the lower part of the body when under acceleration, thus depriving the brain of blood. Black-out and g-LOC have caused a number of fatal aircraft accidents.

<span class="mw-page-title-main">Palpitations</span> Perceived cardiac abnormality in which ones heartbeat can be felt

Palpitations occur when a person becomes aware of their heartbeat. The heartbeat may feel hard, fast, or uneven in their chest.

<span class="mw-page-title-main">Barotrauma</span> Injury caused by external fluid pressure

Barotrauma is physical damage to body tissues caused by a difference in pressure between a gas space inside, or in contact with, the body and the surrounding gas or liquid. The initial damage is usually due to over-stretching the tissues in tension or shear, either directly by an expansion of the gas in the closed space or by pressure difference hydrostatically transmitted through the tissue. Tissue rupture may be complicated by the introduction of gas into the local tissue or circulation through the initial trauma site, which can cause blockage of circulation at distant sites or interfere with the normal function of an organ by its presence. The term is usually applied when the gas volume involved already exists prior to decompression. Barotrauma can occur during both compression and decompression events.

<span class="mw-page-title-main">Reflex syncope</span> Brief loss of consciousness due to a neurologically induced drop in blood pressure

Reflex syncope is a brief loss of consciousness due to a neurologically induced drop in blood pressure and/or a decrease in heart rate. Before an affected person passes out, there may be sweating, a decreased ability to see, or ringing in the ears. Occasionally, the person may twitch while unconscious. Complications of reflex syncope include injury due to a fall.

<span class="mw-page-title-main">Hypocapnia</span> State of reduced carbon dioxide in the blood

Hypocapnia, also known as hypocarbia, sometimes incorrectly called acapnia, is a state of reduced carbon dioxide in the blood. Hypocapnia usually results from deep or rapid breathing, known as hyperventilation.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Cabin pressurization</span> Process to maintain internal air pressure in aircraft or spacecraft

Cabin pressurization is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft in order to create a safe and comfortable environment for humans flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic, tanks. The air is cooled, humidified, and mixed with recirculated air by one or more environmental control systems before it is distributed to the cabin.

Lightheadedness is a common and typically unpleasant sensation of dizziness or a feeling that one may faint. The sensation of lightheadedness can be short-lived, prolonged, or, rarely, recurring. In addition to dizziness, the individual may feel as though their head is weightless. The individual may also feel as though the room is "spinning" or moving (vertigo). Most causes of lightheadedness are not serious and either cure themselves quickly or are easily treated.

The choking game, or fainting game, also sometimes referred to as Space Monkeys, is the act of intentionally cutting off oxygen to the brain with the goal of inducing temporary loss of consciousness and euphoria. A related internet challenge, the blackout challenge, encourages the use of the choking game online.

g-force induced loss of consciousness is a term generally used in aerospace physiology to describe a loss of consciousness occurring from excessive and sustained g-forces draining blood away from the brain causing cerebral hypoxia. The condition is most likely to affect pilots of high performance fighter and aerobatic aircraft or astronauts but is possible on some extreme amusement park rides. G-LOC incidents have caused fatal accidents in high performance aircraft capable of sustaining high g for extended periods. High-g training for pilots of high performance aircraft or spacecraft often includes ground training for G-LOC in special centrifuges, with some profiles exposing pilots to 9 gs for a sustained period.

Freediving blackout, breath-hold blackout, or apnea blackout is a class of hypoxic blackout, a loss of consciousness caused by cerebral hypoxia towards the end of a breath-hold dive, when the swimmer does not necessarily experience an urgent need to breathe and has no other obvious medical condition that might have caused it. It can be provoked by hyperventilating just before a dive, or as a consequence of the pressure reduction on ascent, or a combination of these. Victims are often established practitioners of breath-hold diving, are fit, strong swimmers and have not experienced problems before. Blackout may also be referred to as a syncope or fainting.

Brownout may refer to:

A redout occurs when the body experiences a negative g-force sufficient to cause a blood flow from the lower parts of the body to the head. It is the inverse effect of a greyout, where blood flows away from the head to the lower parts of the body. Usually, a redout will only ever be experienced by pilots, as planes are the most common devices that allow such negative g-forces to be exerted. Redouts are potentially dangerous and can cause retinal damage and hemorrhagic stroke.

<span class="mw-page-title-main">High-g training</span> Training done by aviators and astronauts

High-g training is done by aviators and astronauts who are subject to high levels of acceleration ('g'). It is designed to prevent a g-induced loss of consciousness (g-LOC), a situation when the action of g-forces moves the blood away from the brain to the extent that consciousness is lost. Incidents of acceleration-induced loss of consciousness have caused fatal accidents in aircraft capable of sustaining high-g for considerable periods.

<span class="mw-page-title-main">David Clark Company</span> American manufacturing company

David Clark Company, Inc. (DCC) is an American manufacturing company. DCC designs and manufactures a wide variety of aerospace and industrial protective equipment, including pressure-space suit systems, anti-G suits, headsets, and several medical/safety products. DCC has been involved in the design and manufacture of air-space crew protective equipment since 1941, beginning with the design and development of the first standard anti-G suits and valves used by allied fighter pilots during World War II.

<span class="mw-page-title-main">Syncope (medicine)</span> Transient loss of consciousness and postural tone

Syncope, commonly known as fainting or passing out, is a loss of consciousness and muscle strength characterized by a fast onset, short duration, and spontaneous recovery. It is caused by a decrease in blood flow to the brain, typically from low blood pressure. There are sometimes symptoms before the loss of consciousness such as lightheadedness, sweating, pale skin, blurred vision, nausea, vomiting, or feeling warm. Syncope may also be associated with a short episode of muscle twitching. Psychiatric causes can also be determined when a patient experiences fear, anxiety, or panic; particularly before a stressful event, usually medical in nature. When consciousness and muscle strength are not completely lost, it is called presyncope. It is recommended that presyncope be treated the same as syncope.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.