In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian. The result has been widely used to prove that certain planar graphs constructed to have additional properties are not Hamiltonian; for instance it can prove non-Hamiltonicity of some counterexamples to Tait's conjecture that cubic polyhedral graphs are Hamiltonian.
Grinberg's theorem is named after Latvian mathematician Emanuel Grinberg, who proved it in 1968.
A planar graph is a graph that can be drawn without crossings in the Euclidean plane. If the points belonging to vertices and edges are removed from the plane, the connected components of the remaining points form polygons, called faces, including an unbounded face extending to infinity. A face is a -gon if its boundary is formed by a cycle of vertices and edges of the graph drawing. A Hamiltonian cycle in a graph is a cycle that passes through each vertex exactly once. Let be a finite planar graph with a Hamiltonian cycle , with a fixed planar drawing. By the Jordan curve theorem, separates the plane into the subset inside of and the subset outside of ; every face belongs to one of these two subsets. Denote by and the number of -gonal faces of the drawing that are inside and outside of , respectively. Then Grinberg's theorem states that
The proof is an easy consequence of Euler's formula. [1] [2]
As a corollary of this theorem, if an embedded planar graph has only one face whose number of sides is not 2 mod 3, and the remaining faces all have numbers of sides that are 2 mod 3, then the graph is not Hamiltonian. To see this, consider a sum of the form given in the statement of the theorem, for an arbitrary partition of the faces into two subsets, counted by numbers and . Each face whose number of sides is 2 mod 3 contributes a multiple of three to the sum, because of the factor in the term to which it contributes, while the one remaining face does not. Therefore, the sum is not a multiple of three, and in particular is not zero. Since there is no way of partitioning the faces into two subsets that produce a sum obeying Grinberg's theorem, there can be no Hamiltonian cycle. [1] For instance, for the graph in the figure, all the bounded faces have 5 or 8 sides, but the unbounded face has 9 sides, so it satisfies this condition on numbers of sides and is not Hamiltonian.
Grinberg used his theorem to find non-Hamiltonian cubic polyhedral graphs with high cyclic edge connectivity. The cyclic edge connectivity of a graph is the smallest number of edges whose deletion leaves a subgraph with more than one cyclic component. The 46-vertex Tutte graph, and the smaller cubic non-Hamiltonian polyhedral graphs derived from it, have cyclic edge connectivity three. Grinberg used his theorem to find a non-Hamiltonian cubic polyhedral graph with 44 vertices,24 faces, and cyclic edge connectivity four, and another example (shown in the figure) with 46 vertices,25 faces, and cyclic edge connectivity five, the maximum possible cyclic edge connectivity for a cubic planar graph other than . In the example shown, all of the bounded faces have either five or eight edges, both of which are numbers that are 2 mod 3, but the unbounded face has nine edges, unequal to 2 mod 3. Therefore, by the corollary to Grinberg's theorem, the graph cannot be Hamiltonian. [1]
Grinberg's theorem has also been used to find planar hypohamiltonian graphs, graphs that are not Hamiltonian but that can be made Hamiltonian by removing any single vertex. The construction again makes all but one face have a number of edges congruent to 2 mod 3. [3] Thomassen (1981) uses the theorem in a somewhat more complicated way to find a planar cubic hypohamiltonian graph: the graph he constructs includes a 4-edge face adjacent to four 7-edge faces, and all other faces have five or eight edges. In order to satisfy Grinberg's theorem, a Hamiltonian cycle would have to separate one of the 4- or 7-edge faces from the other four, which is not possible. [4]
It can also be applied to analyze the Hamiltonian cycles of certain non-planar graphs, such as generalized Petersen graphs, by finding large planar subgraphs of these graphs, using Grinberg's theorem to show that these subgraphs are non-Hamiltonian, and concluding that any Hamiltonian cycle must include some of the remaining edges that are not part of these subgraphs. [5]
There exist planar non-Hamiltonian graphs in which all faces have five or eight sides. For these graphs, Grinberg's formula taken modulo three is always satisfied by any partition of the faces into two subsets, preventing the application of his theorem to proving non-Hamiltonicity in this case. [6]
It is not possible to use Grinberg's theorem to find counterexamples to Barnette's conjecture, that every cubic bipartite polyhedral graph is Hamiltonian. Every cubic bipartite polyhedral graph has a partition of the faces into two subsets satisfying Grinberg's theorem, regardless of whether it also has a Hamiltonian cycle. [7]
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.
In mathematics, Tait's conjecture states that "Every 3-connected planar cubic graph has a Hamiltonian cycle through all its vertices". It was proposed by P. G. Tait (1884) and disproved by W. T. Tutte (1946), who constructed a counterexample with 25 faces, 69 edges and 46 vertices. Several smaller counterexamples, with 21 faces, 57 edges and 38 vertices, were later proved minimal by Holton & McKay (1988). The condition that the graph be 3-regular is necessary due to polyhedra such as the rhombic dodecahedron, which forms a bipartite graph with six degree-four vertices on one side and eight degree-three vertices on the other side; because any Hamiltonian cycle would have to alternate between the two sides of the bipartition, but they have unequal numbers of vertices, the rhombic dodecahedron is not Hamiltonian.
In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.
In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs are NP-complete.
In graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs.
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.
In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.
In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.
In graph theory, the hypercube graphQn is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Qn has 2n vertices, 2n – 1n edges, and is a regular graph with n edges touching each vertex.
In graph theory, a cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, it is a connected graph in which every edge belongs to at most one simple cycle, or in which every block is an edge or a cycle.
In graph theory, a peripheral cycle in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles were first studied by Tutte (1963), and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.
In the mathematical field of graph theory, a graph G is said to be hypohamiltonian if G itself does not have a Hamiltonian cycle but every graph formed by removing a single vertex from G is Hamiltonian.
In graph theory, the planar separator theorem is a form of isoperimetric inequality for planar graphs, that states that any planar graph can be split into smaller pieces by removing a small number of vertices. Specifically, the removal of vertices from an n-vertex graph can partition the graph into disjoint subgraphs each of which has at most vertices.
In graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross, and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it.
In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected.
In the mathematical field of graph theory, the Tutte graph is a 3-regular graph with 46 vertices and 69 edges named after W. T. Tutte. It has chromatic number 3, chromatic index 3, girth 4 and diameter 8.
In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.
In graph theory, a branch of mathematics, the Herschel graph is a bipartite undirected graph with 11 vertices and 18 edges. It is a polyhedral graph, and is the smallest polyhedral graph that does not have a Hamiltonian cycle, a cycle passing through all its vertices. It is named after British astronomer Alexander Stewart Herschel, because of Herschel's studies of Hamiltonian cycles in polyhedral graphs.
Barnette's conjecture is an unsolved problem in graph theory, a branch of mathematics, concerning Hamiltonian cycles in graphs. It is named after David W. Barnette, a professor emeritus at the University of California, Davis; it states that every bipartite polyhedral graph with three edges per vertex has a Hamiltonian cycle.
In the mathematical study of graph theory, a pancyclic graph is a directed graph or undirected graph that contains cycles of all possible lengths from three up to the number of vertices in the graph. Pancyclic graphs are a generalization of Hamiltonian graphs, graphs which have a cycle of the maximum possible length.