Group-scheme action

Last updated

In algebraic geometry, an action of a group scheme is a generalization of a group action to a group scheme. Precisely, given a group S-scheme G, a left action of G on an S-scheme X is an S-morphism

Contents

such that

A right action of G on X is defined analogously. A scheme equipped with a left or right action of a group scheme G is called a G-scheme. An equivariant morphism between G-schemes is a morphism of schemes that intertwines the respective G-actions.

More generally, one can also consider (at least some special case of) an action of a group functor: viewing G as a functor, an action is given as a natural transformation satisfying the conditions analogous to the above. [1] Alternatively, some authors study group action in the language of a groupoid; a group-scheme action is then an example of a groupoid scheme.

Constructs

The usual constructs for a group action such as orbits generalize to a group-scheme action. Let be a given group-scheme action as above.

Problem of constructing a quotient

Unlike a set-theoretic group action, there is no straightforward way to construct a quotient for a group-scheme action. One exception is the case when the action is free, the case of a principal fiber bundle.

There are several approaches to overcome this difficulty:

Depending on applications, another approach would be to shift the focus away from a space then onto stuff on a space; e.g., topos. So the problem shifts from the classification of orbits to that of equivariant objects.

See also

Related Research Articles

In mathematics, an associative algebra is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

Group action (mathematics) homomorphism from a group to the group of bijections on some set

In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. One says that the group acts on the space or structure. If a group acts on a structure, it also acts on everything that is built on the structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. In particular, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron.

In mathematics, specifically category theory, adjunction is a relationship that two functors may have. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

Covering space type of continuous map in topology

In mathematics, and more specifically algebraic topology, a covering map is a continuous function from a topological space to a topological space such that each point in has an open neighbourhood evenly covered by . In this case, is called a covering space and the base space of the covering projection. The definition implies that every covering map is a local homeomorphism.

In algebraic topology, a branch of mathematics, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, equivariant cohomology is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space with action of a topological group is defined as the ordinary cohomology ring with coefficient ring of the homotopy quotient :

In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist.

In mathematics, directed algebraic topology is a refinement of algebraic topology for directed spaces, topological spaces and their combinatorial counterparts equipped with some notion of direction. Some common examples of directed spaces are spacetimes and simplicial sets. The basic goal is to find algebraic invariants that classify directed spaces up to directed analogues of homotopy equivalence. For example, homotopy groups and fundamental n-groupoids of spaces generalize to homotopy monoids and fundamental n-categories of directed spaces. Directed algebraic topology, like algebraic topology, is motivated by the need to describe qualitative properties of complex systems in terms of algebraic properties of state spaces, which are often directed by time. Thus directed algebraic topology finds applications in Concurrency, Network traffic control, General Relativity, Noncommutative Geometry, Rewriting Theory, and Biological systems.

In algebraic geometry, a prestackF over a category C equipped with some Grothendieck topology is a category together with a functor p: FC satisfying a certain lifting condition and such that locally isomorphic objects are isomorphic. A stack is a prestack with effective descents, meaning local objects may be patched together to become a global object.

In algebraic geometry, given a category C, a categorical quotient of an object X with action of a group G is a morphism that

In differential geometry, a Lie group action on a manifold M is a group action by a Lie group G on M that is a differentiable map; in particular, it is a continuous group action. Together with a Lie group action by G, M is called a G-manifold. The orbit types of G form a stratification of M and this can be used to understand the geometry of M.

In algebraic geometry, a quotient stack is a stack that parametrizes equivariant objects. Geometrically, it generalizes a quotient of a scheme or a variety by a group: a quotient variety, say, would be a coarse approximation of a quotient stack.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

In mathematics, given an action of a group scheme G on a scheme X over a base scheme S, an equivariant sheafF on X is a sheaf of -modules together with the isomorphism of -modules

In category theory, a branch of mathematics, a groupoid object in a category C admitting finite fiber products is a pair of objects together with five morphisms satisfying the following groupoid axioms

  1. where the are the two projections,
  2. (associativity)
  3. (unit)
  4. (inverse) , , .

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic geometry, a group-stack is an algebraic stack whose categories of points have group structures or even groupoid structures in a compatible way. It generalizes a group scheme, which is a scheme whose sets of points have group structures in a compatible way.

In Category theory and related fields of mathematics, an envelope is a construction that generalizes the operations of "exterior completion", like completion of a locally convex space, or Stone–Čech compactification of a topological space. A dual construction is called refinement.

References

  1. In details, given a group-scheme action , for each morphism , determines a group action ; i.e., the group acts on the set of T-points . Conversely, if for each , there is a group action and if those actions are compatible; i.e., they form a natural transformation, then, by the Yoneda lemma, they determine a group-scheme action .