Guyan reduction

Last updated

In computational mechanics, Guyan reduction, [1] also known as static condensation, is a dimensionality reduction method which reduces the number of degrees of freedom by ignoring the inertial terms of the equilibrium equations and expressing the unloaded degrees of freedom in terms of the loaded degrees of freedom.

Contents

Basic concept

The static equilibrium equation can be expressed as:

where is the stiffness matrix, the force vector, and the displacement vector. The number of the degrees of freedom of the static equilibrium problem is the length of the displacement vector. By partitioning the above system of linear equations with regards to loaded (master) and unloaded (slave) degrees of freedom, the static equilibrium equation may be expressed as:

Focusing on the lower partition of the above system of linear equations, the dependent (slave) degrees of freedom are expressed by the following equation.

Solving the above equation in terms of the independent (master) degrees of freedom leads to the following dependency relations

Substituting the dependency relations on the upper partition of the static equilibrium problem condenses away the slave degrees of freedom, leading to the following reduced system of linear equations.

This can be rewritten as:

The above system of linear equations is equivalent to the original problem, but expressed in terms of the master's degrees of freedom alone. Thus, the Guyan reduction method results in a reduced system by condensing away the slave degrees of freedom.

Linear transformation

The Guyan reduction can also be expressed as a change of basis which produces a low-dimensional representation of the original space, represented by the master's degrees of freedom. The linear transformation that maps the reduced space onto the full space is expressed as:

where represents the Guyan reduction transformation matrix. Thus, the reduced problem is represented as:

In the above equation, represents the reduced system of linear equations that's obtained by applying the Guyan reduction transformation on the full system, which is expressed as:

Application

The Guyan reduction is an integral part of the classic dynamic substructuring method known as the Craig-Bampton (CB) method. The static portion of the reduced system matrices derived from the CB method is a direct result of the Guyan reduction. It is calculated in the same manner as the Guyan stiffness matrix shown above. The term , in the CB domain, is referred to as the constraint modes, . It represents the displacement of all unloaded degrees of freedom when a unit displacement is applied at a single, loaded, degree of freedom, while keeping the rest constrained. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Oscillation</span> Repetitive variation of some measure about a central value

Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

<span class="mw-page-title-main">Linear independence</span> Vectors whose linear combinations are nonzero

In the theory of vector spaces, a set of vectors is said to be linearly independent if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be linearly dependent. These concepts are central to the definition of dimension.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of two or more linear equations involving the same variables. For example,

In vector calculus, the Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as input as the number of vector components of its output, its determinant is referred to as the Jacobian determinant. Both the matrix and the determinant are often referred to simply as the Jacobian in literature.

<span class="mw-page-title-main">Hooke's law</span> Physical law: force needed to deform a spring scales linearly with distance

In physics, Hooke's law is an empirical law which states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations. Such variables, called state variables, evolve over time in a way that depends on the values they have at any given instant and on the externally imposed values of input variables. Output variables’ values depend on the state variable values and may also depend on the input variable values.

<span class="mw-page-title-main">Total least squares</span> Statistical technique

In applied statistics, total least squares is a type of errors-in-variables regression, a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression and also of orthogonal regression, and can be applied to both linear and non-linear models.

In mathematics, reduction refers to the rewriting of an expression into a simpler form. For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible is called "reducing a fraction". Rewriting a radical expression with the smallest possible whole number under the radical symbol is called "reducing a radical". Minimizing the number of radicals that appear underneath other radicals in an expression is called denesting radicals.

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which the map maps to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In mechanics, virtual work arises in the application of the principle of least action to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for different displacements. Among all the possible displacements that a particle may follow, called virtual displacements, one will minimize the action. This displacement is therefore the displacement followed by the particle according to the principle of least action.

The work of a force on a particle along a virtual displacement is known as the virtual work.

In linear algebra, it is often important to know which vectors have their directions unchanged by a given linear transformation. An eigenvector or characteristic vector is such a vector. More precisely, an eigenvector of a linear transformation is scaled by a constant factor when the linear transformation is applied to it: . The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .

In structural engineering, the flexibility method, also called the method of consistent deformations, is the traditional method for computing member forces and displacements in structural systems. Its modern version formulated in terms of the members' flexibility matrices also has the name the matrix force method due to its use of member forces as the primary unknowns.

As one of the methods of structural analysis, the direct stiffness method, also known as the matrix stiffness method, is particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the nodes. The material stiffness properties of these elements are then, through matrix mathematics, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software.

The GF method, sometimes referred to as FG method, is a classical mechanical method introduced by Edgar Bright Wilson to obtain certain internal coordinates for a vibrating semi-rigid molecule, the so-called normal coordinatesQk. Normal coordinates decouple the classical vibrational motions of the molecule and thus give an easy route to obtaining vibrational amplitudes of the atoms as a function of time. In Wilson's GF method it is assumed that the molecular kinetic energy consists only of harmonic vibrations of the atoms, i.e., overall rotational and translational energy is ignored. Normal coordinates appear also in a quantum mechanical description of the vibrational motions of the molecule and the Coriolis coupling between rotations and vibrations.

In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

Dynamic Substructuring (DS) is an engineering tool used to model and analyse the dynamics of mechanical systems by means of its components or substructures. Using the dynamic substructuring approach one is able to analyse the dynamic behaviour of substructures separately and to later on calculate the assembled dynamics using coupling procedures. Dynamic substructuring has several advantages over the analysis of the fully assembled system:

References

  1. GUYAN, J., Reduction of stiffness and mass matrices, R., AIAA Journal 3 380--380 (1965) https://doi.org/10.2514/3.2874
  2. Craig, Bampton (1968). "Coupling of Substructures for Dynamic Analysis" (PDF). AIAA Journal. 6 (7): 1313–1319. Bibcode:1968AIAAJ...6.1313B. doi:10.2514/3.4741.