HRK (gene)

Last updated
HRK
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases HRK , DP5, HARAKIRI, harakiri, BCL2 interacting protein
External IDs OMIM: 603447 HomoloGene: 136405 GeneCards: HRK
Gene location (Human)
Ideogram human chromosome 12.svg
Chr. Chromosome 12 (human) [1]
Human chromosome 12 ideogram.svg
HSR 1996 II 3.5e.svg
Red rectangle 2x18.png
Band 12q24.22Start116,856,144 bp [1]
End116,881,441 bp [1]
RNA expression pattern
PBB GE HRK 206864 s at fs.png

PBB GE HRK 206865 at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003806

n/a

RefSeq (protein)

NP_003797

n/a

Location (UCSC) Chr 12: 116.86 – 116.88 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

Activator of apoptosis harakiri is a protein that in humans is encoded by the HRK gene. [3] [4]

Contents

Function

Activator of apoptosis Hrk regulates apoptosis through interaction with death-repressor proteins Bcl-2 and Bcl-X(L). The HRK protein lacks significant homology to other BCL2 family members except for an 8-amino acid region that was similar to the BCL2 homology domain-3 (BH3) motif of BIK. HRK interacts with BCL2 and BCLXL via the BH3 domain, but not with the death-promoting BCL2-related proteins BAX, BAK, or BCLXS. HRK localizes to membranes of intracellular organelles in a pattern similar to that previously reported for BCL2 and BCLXL. [4]

Interactions

HRK (gene) has been shown to interact with:

Related Research Articles

Bcl-2

Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. It was the first apoptosis regulator identified in any organism.

Bcl-2-associated X protein

Apoptosis regulator BAX, also known as bcl-2-like protein 4, is a protein that in humans is encoded by the BAX gene. BAX is a member of the Bcl-2 gene family. BCL2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein forms a heterodimer with BCL2, and functions as an apoptotic activator. This protein is reported to interact with, and increase the opening of, the mitochondrial voltage-dependent anion channel (VDAC), which leads to the loss in membrane potential and the release of cytochrome c. The expression of this gene is regulated by the tumor suppressor P53 and has been shown to be involved in P53-mediated apoptosis.

Fas receptor

The Fas receptor, also known as Fas, FasR, apoptosis antigen 1, cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the FAS gene. Fas was first identified using a monoclonal antibody generated by immunizing mice with the FS-7 cell line. Thus, the name Fas is derived from FS-7-associated surface antigen.

BH3 interacting-domain death agonist

The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains, and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.

p53 upregulated modulator of apoptosis

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene.The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

Phorbol-12-myristate-13-acetate-induced protein 1 Protein-coding gene in the species Homo sapiens

Phorbol-12-myristate-13-acetate-induced protein 1 is a protein that in humans is encoded by the PMAIP1 gene, and is also known as Noxa.

Bcl-2 homologous antagonist killer

Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6. The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.

Bcl-2-associated death promoter

The BCL2 associated agonist of cell death (BAD) protein is a pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis. BAD is a member of the BH3-only family, a subfamily of the Bcl-2 family. It does not contain a C-terminal transmembrane domain for outer mitochondrial membrane and nuclear envelope targeting, unlike most other members of the Bcl-2 family. After activation, it is able to form a heterodimer with anti-apoptotic proteins and prevent them from stopping apoptosis.

BCL2-like 1

Bcl-2-like 1 or BCL2L1 is a human gene. Through alternative splicing, it encodes both of the human proteins Bcl-xL and Bcl-xS.

MCL1

Induced myeloid leukemia cell differentiation protein Mcl-1 is a protein that in humans is encoded by the MCL1 gene.

BNIP3

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 is a protein that in humans is encoded by the BNIP3 gene.

BCL2L11

Bcl-2-like protein 11, commonly called BIM, is a protein that in humans is encoded by the BCL2L11 gene.

BCL2-related protein A1

Bcl-2-related protein A1 is a protein that in humans is encoded by the BCL2A1 gene.

Bcl-2-interacting killer

Bcl-2-interacting killer is a protein that in humans is encoded by the BIK gene.

BCL2L2

Bcl-2-like protein 2 is a 193-amino acid protein that in humans is encoded by the BCL2L2 gene on chromosome 14. It was originally discovered by Leonie Gibson, Suzanne Cory and colleagues at the Walter and Eliza Hall Institute of Medical Research, who called it Bcl-w.

BNIP3L

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like is a protein that in humans is encoded by the BNIP3L gene.

BMF (gene)

Bcl-2-modifying factor is a protein that in humans is encoded by the BMF gene.

BOK (gene)

Bok is a protein-coding gene of the Bcl-2 family that is found in many invertebrates and vertebrates. It induces apoptosis, a special type of cell death. Currently, the precise function of Bok in this process is unknown.

BCL2L10

Bcl-2-like protein 10 is a protein that in humans is encoded by the BCL2L10 gene.

Bcl-2 family

The Bcl-2 family consists of a number of evolutionarily-conserved proteins that share Bcl-2 homology (BH) domains. The Bcl-2 family is most notable for their regulation of apoptosis, a form of programmed cell death, at the mitochondrion. The Bcl-2 family proteins consists of members that either promote or inhibit apoptosis, and control apoptosis by governing mitochondrial outer membrane permeabilization (MOMP), which is a key step in the intrinsic pathway of apoptosis. A total of 25 genes in the Bcl-2 family were identified by 2008.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000135116 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. 1 2 3 Inohara N, Ding L, Chen S, Núñez G (May 1997). "harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L)". EMBO J. 16 (7): 1686–94. doi:10.1093/emboj/16.7.1686. PMC   1169772 . PMID   9130713.
  4. 1 2 "Entrez Gene: HRK harakiri, BCL2 interacting protein (contains only BH3 domain)".
  5. Whitfield J, Harada K, Bardelle C, Staddon JM (Nov 2003). "High-throughput methods to detect dimerization of Bcl-2 family proteins". Anal. Biochem. 322 (2): 170–8. doi:10.1016/j.ab.2003.07.014. PMID   14596824.
  6. Imaizumi K, Morihara T, Mori Y, Katayama T, Tsuda M, Furuyama T, Wanaka A, Takeda M, Tohyama M (Mar 1999). "The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein". J. Biol. Chem. 274 (12): 7975–81. doi: 10.1074/jbc.274.12.7975 . PMID   10075695.
  7. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (Feb 2005). "Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function". Mol. Cell. 17 (3): 393–403. doi:10.1016/j.molcel.2004.12.030. PMID   15694340.

Further reading