HY-124798

Last updated
HY-124798
HY-124798 structure.png
Identifiers
  • 4-bromo-6-(3,4-dichlorophenyl)sulfanyl-1-[[4-(dimethylcarbamoyl)phenyl]methyl]indole-2-carboxylic acid
CAS Number
PubChem CID
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C25H19BrCl2N2O3S
Molar mass 578.30 g·mol−1
3D model (JSmol)
  • CN(C)C(=O)C1=CC=C(C=C1)CN2C(=CC3=C2C=C(C=C3Br)SC4=CC(=C(C=C4)Cl)Cl)C(=O)O
  • InChI=1S/C25H19BrCl2N2O3S/c1-29(2)24(31)15-5-3-14(4-6-15)13-30-22-11-17(34-16-7-8-20(27)21(28)10-16)9-19(26)18(22)12-23(30)25(32)33/h3-12H,13H2,1-2H3,(H,32,33)
  • Key:MJYFVDNMTKLGTH-UHFFFAOYSA-N

HY-124798 (Rheb inhibitor NR1) is the first compound to be developed that acts as a potent and selective inhibitor of Rheb, a GTP-binding protein which acts as an endogenous activator of the mechanistic target of rapamycin (mTOR) subtype mTORC1. Since many of the side effects of rapamycin and its analogues are thought to result from binding to the other subtype mTORC2, it is hoped that selective inhibition of mTORC1 should have a more selective effects profile. As mTORC1 and mTORC2 have binding sites that are very similar in structure, it has been challenging to develop highly subtype selective inhibitors, making indirect inhibition via modulation of other messenger proteins such as Rheb an attractive approach. However, since HY-124798 has a relatively weak IC50 of 2.1μM, and Rheb also has other targets in addition to mTORC1, it remains to be established whether it will deliver the hoped for improvements in pharmacological profile. [1] [2] [3] [4]

See also

Related Research Articles

<span class="mw-page-title-main">Allosteric regulation</span> Regulation of enzyme activity

In the fields of biochemistry and pharmacology an allosteric regulator is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function. In contrast, substances that bind directly to an enzyme's active site or the binding site of the endogenous ligand of a receptor are called orthosteric regulators or modulators.

<span class="mw-page-title-main">Sirolimus</span> Pharmaceutical drug

Sirolimus, also known as rapamycin and sold under the brand name Rapamune among others, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat perivascular epithelioid cell tumour (PEComa). It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants. It is a mammalian target of rapamycin (mTOR) kinase inhibitor that reduces the sensitivity of T cells and B cells to interleukin-2 (IL-2), inhibiting their activity.

<span class="mw-page-title-main">Everolimus</span> Chemical compound

Everolimus, sold under the brand name Afinitor among others, is a medication used as an immunosuppressant to prevent rejection of organ transplants and as a targeted therapy in the treatment of renal cell cancer and other tumours.

mTOR Mammalian protein found in humans

The mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.

<span class="mw-page-title-main">TSC2</span> Mammalian protein found in Homo sapiens

Tuberous sclerosis complex 2 (TSC2), also known as tuberin, is a protein that in humans is encoded by the TSC2 gene.

<span class="mw-page-title-main">EIF4EBP1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4E-binding protein 1 is a protein that in humans is encoded by the EIF4EBP1 gene. inhibits cap-dependent translation by binding to translation initiation factor eIF4E. Phosphorylation of 4E-BP1 results in its release from eIF4E, thereby allows cap-dependent translation to continue thereby increasing the rate of protein synthesis.

<span class="mw-page-title-main">RHEB</span> Protein-coding gene in the species Homo sapiens

RHEB also known as Ras homolog enriched in brain (RHEB) is a GTP-binding protein that is ubiquitously expressed in humans and other mammals. The protein is largely involved in the mTOR pathway and the regulation of the cell cycle.

<span class="mw-page-title-main">P70-S6 Kinase 1</span> Protein-coding gene in the species Homo sapiens

Ribosomal protein S6 kinase beta-1 (S6K1), also known as p70S6 kinase, is an enzyme that in humans is encoded by the RPS6KB1 gene. It is a serine/threonine kinase that acts downstream of PIP3 and phosphoinositide-dependent kinase-1 in the PI3 kinase pathway. As the name suggests, its target substrate is the S6 ribosomal protein. Phosphorylation of S6 induces protein synthesis at the ribosome.

<span class="mw-page-title-main">RPTOR</span> Protein-coding gene in humans

Regulatory-associated protein of mTOR also known as raptor or KIAA1303 is an adapter protein that is encoded in humans by the RPTOR gene. Two mRNAs from the gene have been identified that encode proteins of 1335 and 1177 amino acids long.

<span class="mw-page-title-main">RICTOR</span> Protein-coding gene in the species Homo sapiens

Rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR) is a protein that in humans is encoded by the RICTOR gene.

Tuberous sclerosis proteins 1 and 2, also known as TSC1 (hamartin) and TSC2 (tuberin), form a protein-complex. The encoding two genes are TSC1 and TSC2. The complex is known as a tumor suppressor. Mutations in these genes can cause tuberous sclerosis complex. Depending on the grade of the disease, intellectual disability, epilepsy and tumors of the skin, retina, heart, kidney and the central nervous system can be symptoms.

<span class="mw-page-title-main">MLST8</span> Protein-coding gene in humans

Target of rapamycin complex subunit LST8, also known as mammalian lethal with SEC13 protein 8 (mLST8) or TORC subunit LST8 or G protein beta subunit-like, is a protein that in humans is encoded by the MLST8 gene. It is a subunit of both mTORC1 and mTORC2, complexes that regulate cell growth and survival in response to nutrient, energy, redox, and hormonal signals. It is upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 prevented mTORC formation and inhibited tumor growth and invasiveness.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs used to treat several human diseases, including cancer, autoimmune diseases, and neurodegeneration. They function by inhibiting the mammalian target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

mTOR Complex 2 (mTORC2) is an acutely rapamycin-insensitive protein complex formed by serine/threonine kinase mTOR that regulates cell proliferation and survival, cell migration and cytoskeletal remodeling. The complex itself is rather large, consisting of seven protein subunits. The catalytic mTOR subunit, DEP domain containing mTOR-interacting protein (DEPTOR), mammalian lethal with sec-13 protein 8, and TTI1/TEL2 complex are shared by both mTORC2 and mTORC1. Rapamycin-insensitive companion of mTOR (RICTOR), mammalian stress-activated protein kinase interacting protein 1 (mSIN1), and protein observed with rictor 1 and 2 (Protor1/2) can only be found in mTORC2. Rictor has been shown to be the scaffold protein for substrate binding to mTORC2.

<span class="mw-page-title-main">Michael N. Hall</span> American-Swiss molecular biologist

Michael Nip Hall is an American-Swiss molecular biologist and professor at the Biozentrum of the University of Basel, Switzerland. He discovered TOR, a protein central for regulating cell growth.

<span class="mw-page-title-main">NV-5440</span> Chemical compound

NV-5440 is a drug which acts as both a non-specific inhibitor of the glucose transporters and also a selective inhibitor of mTORC1, with no significant action at the related mTORC2 subtype. Compounds of this type have potential application in the treatment of cancer, and it is also used for research into the links between calorie restriction and longevity.

<span class="mw-page-title-main">WYE-687</span> Chemical compound

WYE-687 is a drug which acts as an inhibitor of both subtypes of the mechanistic target of rapamycin (mTOR), mTORC1 and mTORC2. It is being researched for potential applications in the treatment of various forms of cancer.

<span class="mw-page-title-main">XL-388</span> Chemical compound

XL-388 is a drug which acts as a potent and selective inhibitor of both subtypes of the mechanistic target of rapamycin (mTOR), mTORC1 and mTORC2. It is being researched for the treatment of various forms of cancer, and has also been used to demonstrate a potential application for mTOR inhibitors in the treatment of neuropathic pain.

<span class="mw-page-title-main">Torin-1</span> Chemical compound

Torin_1 is a drug which was one of the first non-rapalog derived inhibitors of the mechanistic target of rapamycin (mTOR) subtypes mTORC1 and mTORC2. In animal studies it has anti-inflammatory, anti-cancer, and anti-aging properties, and shows activity against neuropathic pain.

References

  1. Mahoney SJ, Narayan S, Molz L, Berstler LA, Kang SA, Vlasuk GP, Saiah E (February 2018). "A small molecule inhibitor of Rheb selectively targets mTORC1 signaling". Nature Communications. 9 (1): 548. Bibcode:2018NatCo...9..548M. doi: 10.1038/s41467-018-03035-z . PMC   5803267 . PMID   29416044.
  2. Hodson N, West DW, Philp A, Burd NA, Moore DR (December 2019). "Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance". American Journal of Physiology. Cell Physiology. 317 (6): C1061 –C1078. doi:10.1152/ajpcell.00209.2019. PMC   6962519 . PMID   31461340.
  3. Dumas SN, Lamming DW (January 2020). "Next Generation Strategies for Geroprotection via mTORC1 Inhibition". The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 75 (1): 14–23. doi: 10.1093/gerona/glz056 . PMC   6909887 . PMID   30794726.
  4. Heras-Sandoval D, Pérez-Rojas JM, Pedraza-Chaverri J (January 2020). "Novel compounds for the modulation of mTOR and autophagy to treat neurodegenerative diseases". Cellular Signalling. 65: 109442. doi:10.1016/j.cellsig.2019.109442. PMID   31639492. S2CID   204850661.