Hand strength

Last updated
Two tai chi practitioners participate in Pushing hands, an exercise particularly involving the use of hand strength and flexibility Push Hands-close up.jpg
Two tai chi practitioners participate in Pushing hands, an exercise particularly involving the use of hand strength and flexibility

Hand strength measurements are of interest to study pathology of the hand that involves loss of muscle strength. Examples of these pathologies are carpal tunnel syndrome, nerve injury, tendon injuries of the hand, and neuromuscular disorders. Hand strength testing is frequently used for clinical decision-making and outcome evaluation in evidence-based medicine. It is used to diagnose diseases, to evaluate and compare treatments, to document progression of muscle strength, and to provide feedback during the rehabilitation process. In addition, strength testing is often used in areas such as sports medicine and ergonomics. In general, hand strength measurements can be divided into manual muscle testing and dynamometry.

Contents

Manual muscle strength testing of the hand muscles

In clinical practice, hand muscles are most often evaluated using manual muscle strength testing using the Medical Research Council (MRC) Scale. [1] In this scale, muscle strength is graded on a scale from 0 to 5. For evaluating the strength of the intrinsic hand muscles, a small modification to the standard MRC grading has been made so that grade 3 indicates ‘full active range of motion’ as compared to ‘movement against gravity’: [2]

Modified Medical Research Council Scale for measuring hand muscles

Grade 5: full active range of motion & Normal muscle resistance

Grade 4: full active range of motion & Reduced muscle resistance

Grade 3: full active range of motion & No muscle resistance

Grade 2: Reduced active range of motion & No muscle resistance

Grade 1: No active range of motion & Palpable muscle contraction only

Grade 0: No active range of motion & No palpable muscle contraction

Manual muscle testing, however, has a number of limitations. One limitation is that the MRC scale is an ordinal scale with disproportional distances between grades. Another limitation of the MRC scale is that the scoring depends on the judgment of the examiner. Finally, with the 6-point ordinal MRC scale, it is difficult to identify relatively small but clinically relevant changes in muscle strength.

Grip and pinch dynamometry

To create more quantitative assessments of hand muscle strength, dynamometers have been developed. These dynamometer measurements are more sensitive to change compared to manual muscle testing and render outcome on a continuous scale. In clinical evaluation and research studies on patients with hand problems, muscle strength measurements are usually based on grip strength and pinch strength dynamometry. The most commonly used grip and pinch dynamometers are the Jamar dynamometers and similar devices by other manufacturers. In several patients groups, these measurements have a good reliability and validity. In addition, grip- and pinch strength are functionally relevant to measure the combined action of a large number of intrinsic and extrinsic hand muscles as well as the combined action of a number of different joints. By comparing outcome with normative data, [3] [4] the amount of muscle strength loss can be determined.

Measurement of the palmar abduction of the thumb with the Rotterdam Intrinsic Hand Myometer (RIHM) Rotterdam Intrinsic Hand Myometer (RIHM) palmar abduction measurement.jpg
Measurement of the palmar abduction of the thumb with the Rotterdam Intrinsic Hand Myometer (RIHM)

Dynamometry of the intrinsic hand muscles

For more specific dynamometry of the intrinsic muscles, intrinsic hand dynamometers have been developed. The advantage of these dynamometers is that they to do not measure a large number of muscles in combined action, but can measure single actions such as thumb opposition of index finger abduction. [5] One such dynamometer is the Rotterdam Intrinsic Hand Myometer (RIHM). [6] Reliability and validity of this dynamometer is comparable to grip- and pinch dynamometers. [7] [8]

Related Research Articles

Hemiparesis, or unilateral paresis, is weakness of one entire side of the body. Hemiplegia is, in its most severe form, complete paralysis of half of the body. Hemiparesis and hemiplegia can be caused by different medical conditions, including congenital causes, trauma, tumors, or stroke.

<span class="mw-page-title-main">Rotator cuff</span> Group of muscles

The rotator cuff is a group of muscles and their tendons that act to stabilize the human shoulder and allow for its extensive range of motion. Of the seven scapulohumeral muscles, four make up the rotator cuff. The four muscles are:

<span class="mw-page-title-main">Goniometer</span> Angle measuring instrument

A goniometer is an instrument that either measures an angle or allows an object to be rotated to a precise angular position. The term goniometry derives from two Greek words, γωνία (gōnía) 'angle' and μέτρον (métron) 'measure'. The protractor is a commonly used type in the fields of mechanics, engineering, and geometry.

<span class="mw-page-title-main">Dynamometer</span> Machine used to measure force or mechanical power

A dynamometer or "dyno" for short, is a device for simultaneously measuring the torque and rotational speed (RPM) of an engine, motor or other rotating prime mover so that its instantaneous power may be calculated, and usually displayed by the dynamometer itself as kW or bhp.

<span class="mw-page-title-main">Rotator cuff tear</span> Medical condition

Rotator cuff tendinopathy is a process of senescence. The pathophysiology is mucoid degeneration. Most people develop rotator cuff tendinopathy within their lifetime.

<span class="mw-page-title-main">Palpation</span> Process of using ones hands to check the body

Palpation is the process of using one's hands to check the body, especially while perceiving/diagnosing a disease or illness. Usually performed by a health care practitioner, it is the process of feeling an object in or on the body to determine its size, shape, firmness, or location.

<span class="mw-page-title-main">Isometric exercise</span> Static contraction exercises

An isometric exercise is an exercise involving the static contraction of a muscle without any visible movement in the angle of the joint. The term "isometric" combines the Greek words isos (equal) and -metria (measuring), meaning that in these exercises the length of the muscle and the angle of the joint do not change, though contraction strength may be varied. This is in contrast to isotonic contractions, in which the contraction strength does not change, though the muscle length and joint angle do.

<span class="mw-page-title-main">Grip strength</span> Force applied by the hand to hold

Grip strength is the force applied by the hand to pull on or suspend from objects and is a specific part of hand strength. Optimum-sized objects permit the hand to wrap around a cylindrical shape with a diameter from one to three inches. Stair rails are an example of where shape and diameter are critical for proper grip in case of a fall. Other grip strengths that have been studied are the hammer and other hand tools. In applications of grip strength, the wrist must be in a neutral position to avoid developing cumulative trauma disorders (CTDs).

<span class="mw-page-title-main">Palmaris longus muscle</span> Muscle of the upper limb

The palmaris longus is a muscle visible as a small tendon located between the flexor carpi radialis and the flexor carpi ulnaris, although it is not always present. It is absent in about 14 percent of the population; this number can vary in African, Asian, and Native American populations, however. Absence of the palmaris longus does not have an effect on grip strength. The lack of palmaris longus muscle does result in decreased pinch strength in fourth and fifth fingers. The absence of palmaris longus muscle is more prevalent in females than males.

<span class="mw-page-title-main">Applied kinesiology</span> Alternative medicine technique

Applied kinesiology (AK) is a pseudoscience-based technique in alternative medicine claimed to be able to diagnose illness or choose treatment by testing muscles for strength and weakness.

<span class="mw-page-title-main">Anterior cruciate ligament injury</span> Ligament injury near the knee

An anterior cruciate ligament injury occurs when the anterior cruciate ligament (ACL) is either stretched, partially torn, or completely torn. The most common injury is a complete tear. Symptoms include pain, an audible cracking sound during injury, instability of the knee, and joint swelling. Swelling generally appears within a couple of hours. In approximately 50% of cases, other structures of the knee such as surrounding ligaments, cartilage, or meniscus are damaged.

<span class="mw-page-title-main">Pull-up (exercise)</span> Upper-body compound pulling exercise

A pull-up is an upper-body strength exercise. The pull-up is a closed-chain movement where the body is suspended by the hands, gripping a bar or other implement at a distance typically wider than shoulder-width, and pulled up. As this happens, the elbows flex and the shoulders adduct and extend to bring the elbows to the torso.

Critical illness polyneuropathy (CIP) and critical illness myopathy (CIM) are overlapping syndromes of diffuse, symmetric, flaccid muscle weakness occurring in critically ill patients and involving all extremities and the diaphragm with relative sparing of the cranial nerves. CIP and CIM have similar symptoms and presentations and are often distinguished largely on the basis of specialized electrophysiologic testing or muscle and nerve biopsy. The causes of CIP and CIM are unknown, though they are thought to be a possible neurological manifestation of systemic inflammatory response syndrome. Corticosteroids and neuromuscular blocking agents, which are widely used in intensive care, may contribute to the development of CIP and CIM, as may elevations in blood sugar, which frequently occur in critically ill patients.

<span class="mw-page-title-main">Ulnar claw</span> Deformity of the hand that develops due to ulnar nerve damage

An ulnar claw, also known as claw hand, is a deformity or an abnormal attitude of the hand that develops due to ulnar nerve damage causing paralysis of the lumbricals. A claw hand presents with a hyperextension at the metacarpophalangeal joints and flexion at the proximal and distal interphalangeal joints of the 4th and 5th fingers. The patients with this condition can make a full fist but when they extend their fingers, the hand posture is referred to as claw hand. The ring- and little finger can usually not fully extend at the proximal interphalangeal joint (PIP).

The Health Dynamics Inventory (HDI) is a 50 item self-report questionnaire developed to evaluate mental health functioning and change over time and treatment. The HDI was written to evaluate the three aspects of mental disorders as described in the Diagnostic and Statistical Manual of Mental Disorders (DSM): "clinically significant behavioral or psychological syndrome or pattern...associated with present distress...or disability". This also corresponds to the phase model described by Howard and colleagues Accordingly, the HDI assesses (1) the experience of emotional or behavioral symptoms that define mental illness, such as dysphoria, worry, angry outbursts, low self-esteem, or excessive drinking, (2) the level of emotional distress related to these symptoms, and (3) the impairment or problems fulfilling the major roles of one's life.

Upper-limb surgery in tetraplegia includes a number of surgical interventions that can help improve the quality of life of a patient with tetraplegia.

A shoulder examination is a portion of a physical examination used to identify potential pathology involving the shoulder. It should be conducted with both shoulders exposed to assess for asymmetry and muscle wasting.

<span class="mw-page-title-main">Medial knee injuries</span> Medical condition

Medial knee injuries are the most common type of knee injury. The medial ligament complex of the knee consists of:

The NIH Toolbox®, for the assessment of neurological and behavioral function, is a multidimensional set of brief royalty-free measures that researchers and clinicians can use to assess cognitive, sensory, motor and emotional function in people ages 3–85. This suite of measures can be administered to study participants in two hours or less, in a variety of settings, with a particular emphasis on measuring outcomes in longitudinal epidemiologic studies and prevention or intervention trials. The battery has been normed and validated across the lifespan in subjects age 3-85 and its use ensures that assessment methods and results can be used for comparisons across existing and future studies. The NIH Toolbox is capable of monitoring neurological and behavioral function over time, and measuring key constructs across developmental stages.

The GRADE approach is a method of assessing the certainty in evidence and the strength of recommendations in health care. It provides a structured and transparent evaluation of the importance of outcomes of alternative management strategies, acknowledgment of patients and the public values and preferences, and comprehensive criteria for downgrading and upgrading certainty in evidence. It has important implications for those summarizing evidence for systematic reviews, health technology assessments, and clinical practice guidelines as well as other decision makers.

References

  1. Neurological examination
  2. Brandsma JW, Schreuders TA (2001). "Sensible manual muscle strength testing to evaluate and monitor strength of the intrinsic muscles of the hand: a commentary". J Hand Ther. 14 (4): 273–8. doi:10.1016/s0894-1130(01)80005-3. PMID   11762727.
  3. Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S (Feb 1985). "Grip and pinch strength: normative data for adults". Arch Phys Med Rehabil. 66 (2): 69–74. PMID   3970660.
  4. Molenaar HM, Selles RW, Willemsen SP, Hovius SE, Stam HJ (2011). "Growth diagrams for individual finger strength in children measured with the RIHM". Clin Orthop Relat Res. 469 (3): 868–76. doi:10.1007/s11999-010-1638-4. PMC   3032876 . PMID   20963526.
  5. Geere J, Chester R, Kale S, Jerosch-Herold C (2007). "Power grip, pinch grip, manual muscle testing or thenar atrophy – which should be assessed as a motor outcome after carpal tunnel decompression? A systematic review". BMC Musculoskelet Disord. 8: 114. doi: 10.1186/1471-2474-8-114 . PMC   2213649 . PMID   18028538.
  6. "RIHM". Archived from the original on 2008-03-22. Retrieved 2008-03-07.
  7. Selles RW, van Ginneken BT, Schreuders TA, Janssen WG, Stam HJ (Dec 2006). "Dynamometry of intrinsic hand muscles in patients with Charcot-Marie-Tooth disease". Neurology. 67 (11): 2022–7. CiteSeerX   10.1.1.625.7927 . doi:10.1212/01.wnl.0000247272.96136.16. PMID   17159111. S2CID   17982574.
  8. Schreuders TA, Selles RW, Roebroeck ME, Stam HJ (2006). "Strength measurements of the intrinsic hand muscles: a review of the development and evaluation of the Rotterdam intrinsic hand myometer". J Hand Ther. 19 (4): 393–401, quiz 402. doi:10.1197/j.jht.2006.07.024. PMID   17056399.