Hand warmers are small, often disposable, packets that produce heat to warm cold hands. They are used throughout the world in a variety of ways, including outdoor recreation, manual labor, and homelessness.
The hand and foot warmer was first patented by Jonathan T. Ellis of New Jersey in 1891, [1] though no evidence exists that it was ever produced. [2]
The first commercially produced hand warmer was created by Japanese inventor Niichi Matoba. Matoba received a patent for applying the principle of an oxidation reaction that produces heat by means of platinum catalysis. He then devoted his time to researching how to make the product suitable for practical use. In 1923, he manufactured a prototype of his device naming it HAKUKIN-kairo (HAKKIN warmer). [3] A version of these original portable hand warmers is still produced in Japan. [4]
Air-activated hand warmers contain cellulose, iron powder, activated carbon, vermiculite (which holds water) and salt. They produce heat from the exothermic oxidation of iron when exposed to air. [5] [6] The oxygen molecules in the air, together with the water, react with iron, forming rust (which is a hydrated oxide of iron). Salt is usually added to catalyze the process. [7] The commercial product is an air-permeable fabric package containing the mixture, and supplied in a sealed plastic pouch. The reaction begins as soon as the package is removed from the pouch, thereby exposed to the air, typically in a glove or pocket of a jacket. It reaches its maximum temperature in about 20 minutes, and continues to generate a modest level of heat for many hours. The instructions warn against contact with the skin of babies or young children, as the package can reach 74 °C (165 °F). When exhausted, it can be discarded with the household garbage. [8]
This type of hand warmer can be recharged by immersing the hand-warmer in very hot water until the contents are uniform and then allowing it to cool. The release of heat is triggered by flexing a small metal disk in the hand warmer, which generates nucleation centers that initiate crystallisation. Heat is required to dissolve the salt in its own water of crystallisation and it is this heat that is released when crystallisation is initiated. [9] The latent heat of fusion is about 264–289 kJ/kg. [10]
This process can be scaled up to create a means of domestic heating storage and can produce instant heat. [11]
Lighter fuel hand-warmers use lighter fluid (highly refined petroleum naphtha), in a catalyst combustion unit that runs at a lower temperature than an open flame with a greatly reduced fire risk. After lighting they operate inside a fabric bag typically with a drawstring. This controls the oxygen supply to the catalyst and protects against skin burns. Re-use is simply done by refuelling. Modern units may use a glass fiber substrate coated with platinum or another catalyst; some older units used asbestos substrates. The replaceable catalyst units can last for many years provided they have combusted vapour from their cotton wadding filled fuel reservoir, and have not had fuel directly applied to them. These hand warmers are for people who work or pursue leisure activities outdoors in very low temperatures, especially those that require manual dexterity that is not possible while wearing thick gloves or mittens. They date from the foundation of the Japanese Hakkin company by Niichi Matoba, who founded it to produce a hand warmer 'Hakkin Kairo' based on his Japanese patent of 1923. [12] John W. Smith, President of Aladdin Laboratories, Inc. of Minneapolis was awarded a US patent for a product called the Jon-e (pronounced “Johnny”) catalytic hand warmer on December 25, 1951. Production peaked in the fifties and sixties, at 10,000 warmers a day. Aladdin went out of business in the 1970s. [13] In 2010 the Zippo lighter company introduced an all-metal catalytic hand warmer, along with other outdoor products. [14]
Battery operated hand warmers use electrically resistive heating devices to convert electrical energy in the battery into heat. Typically hand warmers can heat for up to six hours, with heat outputs from 40-48C. Rechargeable electronic hand warmers can be charged from a mains power supply or from a 5V USB power supply, with many recharge cycles possible.[ citation needed ]
Charcoal hand-warmers provide heat by a slow exothermic reaction of charcoals in a special case. Typically made of metal to act as an even heat spreader, these cases often have comfortable felt on the outside and sometimes a fire-proof insulative lining on the inside. Usage involves a carbon stick being ignited and placed inside the hand-warmer case to smolder with oxygen in the air in a heat-producing redox reaction, forming carbon oxides. The reaction can last 3 to 6 hours depending on whether both or only one ends of the charcoal is lit. Unlike iron-oxide based hand-warmers, charcoal handwarmers can last longer while staying hotter due to a more linear reaction rate but due to the charcoal fuel being shelf-stable they require an ignition source and produce a smokey odor when used. The charcoal fuel sticks are available for purchase online and from outdoor activity shops but have become less popular.[ citation needed ]
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining. The study of combustion is known as combustion science.
Thermite is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic reduction-oxidation (redox) reaction. Most varieties are not explosive, but can create brief bursts of heat and high temperature in a small area. Its form of action is similar to that of other fuel-oxidizer mixtures, such as black powder.
Liquid hydrogen (H2(l)) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form.
Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.
A flameless ration heater (FRH), colloquially an MRE heater, is a form of self-heating food packaging included in U.S. military Meal, Ready-to-Eat (MRE) rations since 1993.
A catalytic converter is an exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.
Dry distillation is the heating of solid materials to produce gaseous products. The method may involve pyrolysis or thermolysis, or it may not.
A heating pad is a pad used for warming of parts of the body in order to manage pain. Localized application of heat causes the blood vessels in that area to dilate, enhancing perfusion to the targeted tissue. Types of heating pads include electrical, chemical and hot water bottles.
Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable metals. Pyrometallurgical treatment may produce products able to be sold such as pure metals, or intermediate compounds or alloys, suitable as feed for further processing. Examples of elements extracted by pyrometallurgical processes include the oxides of less reactive elements like iron, copper, zinc, chromium, tin, and manganese.
Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel with few industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.
A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.
Wet oxidation is a form of hydrothermal treatment. It is the oxidation of dissolved or suspended components in water using oxygen as the oxidizer. It is referred to as "Wet Air Oxidation" (WAO) when air is used. The oxidation reactions occur in superheated water at a temperature above the normal boiling point of water (100 °C), but below the critical point (374 °C).
A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane reforming (SMR). Most methods work by exposing methane to a catalyst at high temperature and pressure.
Spontaneous combustion or spontaneous ignition is a type of combustion which occurs by self-heating, followed by thermal runaway and finally, autoignition. It is distinct from pyrophoricity, in which a compound needs no self-heat to ignite. The correct storage of spontaneously combustible materials is extremely important considering improper storage is the main cause of spontaneous combustion. Materials such as coal, cotton, hay, and oils should be stored at proper temperatures and moisture levels to prevent spontaneous combustion. Allegations of spontaneous human combustion are considered pseudoscience.
Most heated clothing is designed for cold-weather sports and activities, such as motorcycle riding, downhill skiing, diving, winter biking, and snowmobiling, trekking and for outdoor workers such as construction workers and carpenters. Since the London Olympics, heated clothing has also been used by athletes to keep their muscles warm between the warm-up and the race.
The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.
Charcoal is a lightweight black carbon residue produced by strongly heating wood in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, called charcoal burning, often by forming a charcoal kiln, the heat is supplied by burning part of the starting material itself, with a limited supply of oxygen. The material can also be heated in a closed retort. Modern charcoal briquettes used for outdoor cooking may contain many other additives, e.g. coal.
Self-heating food packaging is active packaging with the ability to heat food contents without external heat sources or power, usually using an exothermic chemical reaction. Packets can also be self-cooling. These packages are useful for military operations, during natural disasters, or whenever conventional cooking is not available. They are often used for military field rations, camping food, instant food, or other types of food intended for preparation where proper cooking facilities or methods are unavailable or less ideal.
A catalytic heater is a flameless heater which relies on catalyzed chemical reactions to break down molecules and produce calefaction (heat). When the catalyst, fuel, and oxygen combine together, they react at a low enough temperature that a flame is not produced. This process keeps repeating itself until either oxygen or the fuel source is taken out of the equation.
A reversible solid oxide cell (rSOC) is a solid-state electrochemical device that is operated alternatively as a solid oxide fuel cell (SOFC) and a solid oxide electrolysis cell (SOEC). Similarly to SOFCs, rSOCs are made of a dense electrolyte sandwiched between two porous electrodes. Their operating temperature ranges from 600°C to 900°C, hence they benefit from enhanced kinetics of the reactions and increased efficiency with respect to low-temperature electrochemical technologies.