Harish-Chandra homomorphism

Last updated

In mathematical representation theory, a Harish-Chandra homomorphism is a homomorphism from a subalgebra of the universal enveloping algebra of a semisimple Lie algebra to the universal enveloping algebra of a subalgebra. A particularly important special case is the Harish-Chandra isomorphism identifying the center of the universal enveloping algebra with the invariant polynomials on a Cartan subalgebra.

In mathematics, a universal enveloping algebra is the most general algebra that contains all representations of a Lie algebra.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra (1951), is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center Z(U ) of the universal enveloping algebra U(g) of a reductive Lie algebra g to the elements S(h)W of the symmetric algebra S(h) of a Cartan subalgebra h that are invariant under the Weyl group W.

In the case of the K-invariant elements of the universal enveloping algebra for a maximal compact subgroup K, the Harish-Chandra homomorphism was studied by Harish-Chandra  ( 1958 ).

Related Research Articles

Lie algebra representation homomorphism of Lie algebras whose codomain is the endomorphism algebra of a vector space

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

Semisimple Lie algebra Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras, i.e., non-abelian Lie algebras whose only ideals are {0} and itself. It is important to emphasize that a one-dimensional Lie algebra is by definition not considered a simple Lie algebra, even though such an algebra certainly has no nontrivial ideals. Thus, one-dimensional algebras are not allowed as summands in a semisimple Lie algebra.

Hermitian symmetric space Manifold with inversion symmetry

In mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has as an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds.

In mathematics, the orbit method establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: orbits of the action of the group on the dual space of its Lie algebra. The theory was introduced by Kirillov for nilpotent groups and later extended by Bertram Kostant, Louis Auslander, Lajos Pukánszky and others to the case of solvable groups. Roger Howe found a version of the orbit method that applies to p-adic Lie groups. David Vogan proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.

This is a glossary for the terminology applied in the mathematical theories of semisimple Lie groups. It also covers terms related to their Lie algebras, their representation theory, and various geometric, algebraic and combinatorial structures that occur in connection with the development of what is a central theory of contemporary mathematics.

In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group G that is a subrepresentation of the left regular representation of G on L²(G). In the Plancherel measure, such representations have positive measure. The name comes from the fact that they are exactly the representations that occur discretely in the decomposition of the regular representation.

In mathematics, a tempered representation of a linear semisimple Lie group is a representation that has a basis whose matrix coefficients lie in the Lp space

In mathematics, the infinitesimal character of an irreducible representation ρ of a semisimple Lie group G on a vector space V is, roughly speaking, a mapping to scalars that encodes the process of first differentiating and then diagonalizing the representation. It therefore is a way of extracting something essential from the representation ρ by two successive linearizations.

In mathematics, the Harish-Chandra character, named after Harish-Chandra, of a representation of a semisimple Lie group G on a Hilbert space H is a distribution on the group G that is analogous to the character of a finite-dimensional representation of a compact group.

In mathematics, Harish-Chandra's regularity theorem, introduced by Harish-Chandra (1963), states that every invariant eigendistribution on a semisimple Lie group, and in particular every character of an irreducible unitary representation on a Hilbert space, is given by a locally integrable function. Harish-Chandra proved a similar theorem for semisimple p-adic groups.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and the algebraic operations in terms of matrix addition and matrix multiplication. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation is matrix multiplication.

In mathematics, Harish-Chandra's c-function is a function related to the intertwining operator between two principal series representations, that appears in the Plancherel measure for semisimple Lie groups. Harish-Chandra introduced a special case of it defined in terms of the asymptotic behavior of a zonal spherical function of a Lie group, and Harish-Chandra (1970) introduced a more general c-function called Harish-Chandra's (generalized) C-function. Gindikin and Karpelevich introduced the Gindikin–Karpelevich formula, a product formula for Harish-Chandra's c-function.

Category O is a mathematical object in representation theory of semisimple Lie algebras. It is a category whose objects are certain representations of a semisimple Lie algebra and morphisms are homomorphisms of representations.

In mathematical abstract harmonic analysis, Harish-Chandra's Schwartz space is a space of functions on a semisimple Lie group whose derivatives are rapidly decreasing, studied by Harish-Chandra. It is an analogue of the Schwartz space on a real vector space, and is used to define the space of tempered distributions on a semisimple Lie group.

In mathematics, the Duflo isomorphism is an isomorphism between the center of the universal enveloping algebra of a finite-dimensional Lie algebra and the invariants of its symmetric algebra. It was introduced by Duflo (1977).

References

<i>American Journal of Mathematics</i> scientific journal

The American Journal of Mathematics is a bimonthly mathematics journal published by the Johns Hopkins University Press.

Digital object identifier Character string used as a permanent identifier for a digital object, in a format controlled by the International DOI Foundation

In computing, a Digital Object Identifier or DOI is a persistent identifier or handle used to uniquely identify objects, standardized by the International Organization for Standardization (ISO). An implementation of the Handle System, DOIs are in wide use mainly to identify academic, professional, and government information, such as journal articles, research reports and data sets, and official publications though they also have been used to identify other types of information resources, such as commercial videos.

International Standard Serial Number unique eight-digit number used to identify a print or electronic periodical publication

An International Standard Serial Number (ISSN) is an eight-digit serial number used to uniquely identify a serial publication, such as a magazine. The ISSN is especially helpful in distinguishing between serials with the same title. ISSN are used in ordering, cataloging, interlibrary loans, and other practices in connection with serial literature.