Harwell Synchrocyclotron

Last updated

The Harwell Synchrocyclotron was a particle accelerator based at the Atomic Energy Research Establishment campus near Harwell, Oxfordshire. Construction of the accelerator began in 1946 [1] and it was completed in 1949. [2] The machine was of the synchrocyclotron design, with a 1.62T magnet of diameter 110" (2.8m) allowing protons to be accelerated to energies of 160-175MeV. Accelerator physicist John Adams, who later went on to lead design of CERN's SPS, was instrumental in the design and construction of this machine. [3] Its main function was basic nuclear and particle physics research, with a focus on proton-proton [4] [5] [6] and proton-neutron scattering. [7]

Comparisons were frequently drawn between the second cyclotron at the Harvard Cyclotron Laboratory and the Harwell Synchrocyclotron, and in 1974 clinicians from Oxford's Radcliffe Infirmary led by Dr T Hockaday floated plans to replicate the proton therapy work carried out at Massachusetts General Hospital with the accelerator. [1] Initial preclinical research took place, including the measurement of proton beams in tissue equivalent plastics as part of the development of phantom materials by researchers at St Bartholomew's Hospital. [8] Interest in this project continued into 1978, when the MRC met to make a funding decision. [9] No clinical trials ever took place and decommissioning of the former AERE site began in the 1990s. Demolition of Hangar 7, which housed both the synchrocyclotron and the ZETA nuclear fusion project, was completed during financial year 2005/2006. [10]

Related Research Articles

CERN European particle physics research organisation based in Geneva, Switzerland

The European Organization for Nuclear Research, known as CERN, is a European research organization that operates the largest particle physics laboratory in the world. Established in 1954, the organization is based in a northwest suburb of Geneva on the Franco–Swiss border and has 23 member states. Israel is the only non-European country granted full membership. CERN is an official United Nations Observer.

Cyclotron Type of particle accelerator

A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention.

Synchrocyclotron

A synchrocyclotron is a special type of cyclotron, patented by Edwin McMillan in 1952, in which the frequency of the driving RF electric field is varied to compensate for relativistic effects as the particles' velocity begins to approach the speed of light. This is in contrast to the classical cyclotron, where this frequency is constant.

On-Line Isotope Mass Separator On-line isotope separator facility at CERN

The ISOLDE Radioactive Ion Beam Facility, is an on-line isotope separator facility located at the heart of the CERN accelerator complex on the Franco-Swiss border. The name of the facility is an acronym for Isotope Separator On Line DEvice. Created in 1964, the ISOLDE facility started delivering radioactive ion beams to users in 1967. Originally located at the SynchroCyclotron accelerator, the facility has been upgraded several times most notably in 1992 when the whole facility was moved to be connected to CERN's ProtonSynchroton Booster (PSB). Entering its 6th decade of existence, ISOLDE is currently the oldest facility still in operation at CERN. From the first pioneering isotope separation on-line (ISOL) beams to the latest technical advances allowing for the production of the most exotic species, ISOLDE benefits a wide range of physics communities with applications covering nuclear, atomic, molecular and solid-state physics, but also biophysics and astrophysics, as well as high-precision experiments looking for physics beyond the Standard Model. The facility is operated by the ISOLDE Collaboration, comprising CERN and fifteen (mostly) European countries. As of 2019, more than 800 experimentalists around the world are coming to ISOLDE to perform typically 45 different experiments per year.

Intersecting Storage Rings Former CERN infrastructure

The ISR was a particle accelerator at CERN. It was the world's first hadron collider, and ran from 1971 to 1984, with a maximum center of mass energy of 62 GeV. From its initial startup, the collider itself had the capability to produce particles like the J/ψ and the upsilon, as well as observable jet structure; however, the particle detector experiments were not configured to observe events with large momentum transverse to the beamline, leaving these discoveries to be made at other experiments in the mid-1970s. Nevertheless, the construction of the ISR involved many advances in accelerator physics, including the first use of stochastic cooling, and it held the record for luminosity at a hadron collider until surpassed by the Tevatron in 2004.

A radio-frequency quadrupole (RFQ) beam cooler is a device for particle beam cooling, especially suited for ion beams. It lowers the temperature of a particle beam by reducing its energy dispersion and emittance, effectively increasing its brightness (brilliance). The prevalent mechanism for cooling in this case is buffer-gas cooling, whereby the beam loses energy from collisions with a light, neutral and inert gas. The cooling must take place within a confining field in order to counteract the thermal diffusion that results from the ion-atom collisions.

Herwig Schopper Particle physicist

Herwig Franz Schopper is a Czech-born experimental physicist and was the director general of CERN from 1981 to 1988.

Particle accelerator Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

Hot spots in subatomic physics are regions of high energy density or temperature in hadronic or nuclear matter.

Harvard Cyclotron Laboratory

The Harvard Cyclotron Laboratory operated from 1949 to 2002. It was most notable for its contributions to the development of proton therapy.

Fermilab E-906/SeaQuest

Fermilab E-906/SeaQuest is a particle physics experiment which will use Drell–Yan process to measure the contributions of antiquarks to the structure of the proton or neutron and how this structure is modified when the proton or neutron is included within an atomic nucleus.

Alan Astbury Canadian physicist

Alan Astbury (1934–2014) was a Canadian physicist, emeritus professor at the University of Victoria, and director of the Tri-Universities Meson Facility (TRIUMF) laboratory.

Research Institute for Nuclear Problems of Belarusian State University

The Research Institute for Nuclear Problems of Belarusian State University is a research institute in Minsk, Belarus. Its main fields of research are nuclear physics and particle physics.

Synchro-Cyclotron (CERN)

The Synchro-Cyclotron, or Synchrocyclotron (SC), built in 1957, was CERN’s first accelerator. It was 15.7 metres (52 ft) in circumference and provided beams for CERN's first experiments in particle and nuclear physics. It accelerated particles to energies up to 600 MeV. The foundation stone of CERN was laid at the site of the Synchrocyclotron by the first Director-General of CERN, Felix Bloch. After its remarkably long 33 years of service time, the SC was decommissioned in 1990. Nowadays it accepts visitors as an exhibition area in CERN.

Maria Fidecaro is an Italian experimental physicist with a focus on particle physics. She has spent most of her career at CERN, where she today has the status of honorary member of the personnel.

Luigi Di Lella Italian experimental particle physicist

Luigi Di Lella is an Italian experimental particle physicist. He has been a staff member at CERN for over 40 years, and has played an important role in major experiments at CERN such as CAST and UA2. From 1986 to 1990 he acted as spokesperson for the UA2 Collaboration, which, together with the UA1 Collaboration, discovered the W and Z bosons in 1983.

Pierre Darriulat French experimental particle physicist

Pierre Darriulat is a French experimental particle physicist. As staff member at CERN, he contributed in several prestigious experiments. He was the spokesperson of the UA2 collaboration from 1981 to 1986, during which time the UA2 collaboration, together with the UA1 collaboration, discovered the W and Z bosons in 1983.

An electron–ion collider (EIC) is a type of particle accelerator collider designed to collide spin-polarized beams of electrons and ions, in order to study the properties of nuclear matter in detail via deep inelastic scattering. In 2012, a whitepaper was published, proposing the developing and building of an EIC accelerator, and in 2015, the Department of Energy Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in nuclear physics in the United States.

Maurice Jacob French theoretical particle physicist

Maurice René Michel Jacob was a French theoretical particle physicist.

Emanuele Quercigh Italian particle physicist (born 1934)

Emanuele Quercigh is an Italian particle physicist who works since 1964 at CERN, most known for the discovery of quark-gluon plasma (QGP). Quercigh moved as a child to Friuli with his mother and his younger brother after the early death of his father. Quercigh studied physics at the University of Milan in Italy, where he became assistant of professor Giuseppe Occhialini in 1959.

References

  1. 1 2 Whitehead, C (January 1974). "A synchrocyclotron and its proton beam". Proc. R. Soc. Med. 67 (1): 29–31. PMC   1645654 . PMID   4821590.
  2. "The Harwell110 in synchrocyclotron modification scheme" (PDF). 20 November 2009. Retrieved 2015-08-02.
  3. "JOHN ADAMS AND HIS TIMES – Lecture delivered at CERN on 2 December 1985" (PDF). 28 May 2010. Retrieved 2015-08-02.
  4. Jarvis, O. N.; Brogden, T. W. P.; Rose, B.; Scanlon, J. P.; Orchard-Webb, J.; Wigan, M. R. (1968-01-01). "Measurements of the correlation parameters CNN in proton-proton scattering". Nuclear Physics A. 108 (1): 63–80. Bibcode:1968NuPhA.108...63J. doi:10.1016/0375-9474(68)90145-0. ISSN   0375-9474.
  5. Wigan, M. R.; Bell, R. A.; Martin, P. J.; Jarvis, O. N.; Scanlon, J. P. (1968-06-24). "Measurements of the differential cross section and polarization in proton-proton scattering at about 98 MeV". Nuclear Physics A. 114 (2): 377–391. Bibcode:1968NuPhA.114..377W. doi:10.1016/0375-9474(68)90361-8.
  6. Butterworth, J.; Orchard-Webb, J.; Riley, J.; Wigan, M. R. (1967-01-01). "Polarization and relaxation of protons in irradiated lanthanum magnesium nitrate". Proceedings of the Physical Society. 91 (3): 605. Bibcode:1967PPS....91..605B. doi:10.1088/0370-1328/91/3/312. ISSN   0370-1328.
  7. "Tissue substitutes for particulate radiations and their use in radiation dosimetry and radiotherapy". qmro.qmul.ac.uk. Retrieved 2015-08-02.
  8. New Scientist. Reed Business Information. 1978-02-09. p. 339. ISSN   0262-4079 . Retrieved 2015-08-02.
  9. "Harwell Review 2005/06" (PDF). UKAEA. 28 June 2006. Archived from the original (PDF) on 6 October 2011. Retrieved 2015-08-02.

Coordinates: 51°34′48″N1°18′30″W / 51.5799°N 1.3082°W / 51.5799; -1.3082