Head shadow

Last updated

A head shadow (or acoustic shadow) is a region of reduced amplitude of a sound because it is obstructed by the head. It is an example of diffraction. [1] [2]

Contents

Sound may have to travel through and around the head in order to reach an ear. The obstruction caused by the head can account for attenuation (reduced amplitude) of overall intensity as well as cause a filtering effect. The filtering effects of head shadowing are an essential element of sound localisation—the brain weighs the relative amplitude, timbre, and phase of a sound heard by the two ears and uses the difference to interpret directional information.

The shadowed ear, the ear further from the sound source, receives sound slightly later (up to approximately 0.7 ms later) than the unshadowed ear, and the timbre, or frequency spectrum, of the shadowed sound wave is different because of the obstruction of the head.

The head shadow causes particular difficulty in sound localisation in people suffering from unilateral hearing loss. [3] It is a factor to consider when correcting hearing loss with directional hearing aids. [4]

See also

Related Research Articles

Binaural recording Method of recording sound

Binaural recording is a method of recording sound that uses two microphones, arranged with the intent to create a 3-D stereo sound sensation for the listener of actually being in the room with the performers or instruments. This effect is often created using a technique known as dummy head recording, wherein a mannequin head is fitted with a microphone in each ear. Binaural recording is intended for replay using headphones and will not translate properly over stereo speakers. This idea of a three-dimensional or "internal" form of sound has also translated into useful advancement of technology in many things such as stethoscopes creating "in-head" acoustics and IMAX movies being able to create a three-dimensional acoustic experience.

Illusory continuity of tones Auditory illusion

The illusory continuity of tones is the auditory illusion caused when a tone is interrupted for a short time, during which a narrow band of noise is played. The noise has to be of a sufficiently high level to effectively mask the gap, unless it is a gap transfer illusion. Whether the tone is of constant, rising or decreasing pitch, the ear perceives the tone as continuous if the discontinuity is masked by noise. Because the human ear is very sensitive to sudden changes, however, it is necessary for the success of the illusion that the amplitude of the tone in the region of the discontinuity not decrease or increase too abruptly. While the inner mechanisms of this illusion is not well understood, there is evidence that supports activation of primarily the auditory cortex is present.

Loudness Subjective perception of sound pressure

In acoustics, loudness is the subjective perception of sound pressure. More formally, it is defined as, "That attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud". The relation of physical attributes of sound to perceived loudness consists of physical, physiological and psychological components. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.

Auricle (anatomy) Visible part of the ear that is outside the head

The auricle or auricula is the visible part of the ear that is outside the head. It is also called the pinna, a term that is used more in zoology.

Sound localization is a listener's ability to identify the location or origin of a detected sound in direction and distance.

Audiometry is a branch of audiology and the science of measuring hearing acuity for variations in sound intensity and pitch and for tonal purity, involving thresholds and differing frequencies. Typically, audiometric tests determine a subject's hearing levels with the help of an audiometer, but may also measure ability to discriminate between different sound intensities, recognize pitch, or distinguish speech from background noise. Acoustic reflex and otoacoustic emissions may also be measured. Results of audiometric tests are used to diagnose hearing loss or diseases of the ear, and often make use of an audiogram.

Unilateral hearing loss (UHL) is a type of hearing impairment where there is normal hearing in one ear and impaired hearing in the other ear.

In audiology and psychoacoustics the concept of critical bands, introduced by Harvey Fletcher in 1933 and refined in 1940, describes the frequency bandwidth of the "auditory filter" created by the cochlea, the sense organ of hearing within the inner ear. Roughly, the critical band is the band of audio frequencies within which a second tone will interfere with the perception of the first tone by auditory masking.

<span class="mw-page-title-main">Microtia</span> Medical condition

Microtia is a congenital deformity where the auricle is underdeveloped. A completely undeveloped pinna is referred to as anotia. Because microtia and anotia have the same origin, it can be referred to as microtia-anotia. Microtia can be unilateral or bilateral. Microtia occurs in 1 out of about 8,000–10,000 births. In unilateral microtia, the right ear is most commonly affected. It may occur as a complication of taking Accutane (isotretinoin) during pregnancy.

<span class="mw-page-title-main">Bone-anchored hearing aid</span>

A bone-anchored hearing aid (BAHA) is a type of hearing aid based on bone conduction. It is primarily suited for people who have conductive hearing losses, unilateral hearing loss, single-sided deafness and people with mixed hearing losses who cannot otherwise wear 'in the ear' or 'behind the ear' hearing aids. They are more expensive than conventional hearing aids, and their placement involves invasive surgery which carries a risk of complications, although when complications do occur, they are usually minor.

Interaural time difference

The interaural time difference when concerning humans or animals, is the difference in arrival time of a sound between two ears. It is important in the localization of sounds, as it provides a cue to the direction or angle of the sound source from the head. If a signal arrives at the head from one side, the signal has further to travel to reach the far ear than the near ear. This pathlength difference results in a time difference between the sound's arrivals at the ears, which is detected and aids the process of identifying the direction of sound source.

The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA), is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp. The measured recording is a series of six to seven vertex positive waves of which I through V are evaluated. These waves, labeled with Roman numerals in Jewett and Williston convention, occur in the first 10 milliseconds after onset of an auditory stimulus. The ABR is considered an exogenous response because it is dependent upon external factors.

Binaural fusion or binaural integration is a cognitive process that involves the combination of different auditory information presented binaurally, or to each ear. In humans, this process is essential in understanding speech as one ear may pick up more information about the speech stimuli than the other.

Auditory masking occurs when the perception of one sound is affected by the presence of another sound.

<span class="mw-page-title-main">Sound</span> Vibration that propagates as an acoustic wave

In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

Psychoacoustics is the branch of psychophysics involving the scientific study of sound perception and audiology—how humans perceive various sounds. More specifically, it is the branch of science studying the psychological responses associated with sound. Psychoacoustics is an interdisciplinary field of many areas, including psychology, acoustics, electronic engineering, physics, biology, physiology, and computer science.

Spatial hearing loss refers to a form of deafness that is an inability to use spatial cues about where a sound originates from in space. This in turn affects the ability to understand speech in the presence of background noise.

Perceptual-based 3D sound localization is the application of knowledge of the human auditory system to develop 3D sound localization technology.

Temporal envelope (ENV) and temporal fine structure (TFS) are changes in the amplitude and frequency of sound perceived by humans over time. These temporal changes are responsible for several aspects of auditory perception, including loudness, pitch and timbre perception and spatial hearing.

Binaural unmasking is phenomenon of auditory perception discovered by Ira Hirsh. In binaural unmasking, the brain combines information from the two ears in order to improve signal detection and identification in noise. The phenomenon is most commonly observed when there is a difference between the interaural phase of the signal and the interaural phase of the noise. When such a difference is present there is an improvement in masking threshold compared to a reference situation in which the interaural phases are the same, or when the stimulus has been presented monaurally. Those two cases usually give very similar thresholds. The size of the improvement is known as the "binaural masking level difference" (BMLD), or simply as the "masking level difference".

References

  1. Schleich, Nopp & d'Haese 2004.
  2. Van Wanrooij & Van Opstal 2004.
  3. Gray, Kesser & Cole 2009.
  4. Oberzut & Olson 2003.

Sources