Heinkel HeS 011

Last updated
HeS 011
Heinkel-Hirth HeS 011 USAF.jpg
Preserved Heinkel HeS 011 at the NMUSAF,
its Riedel starter mounted atop the intake passage.
Type Turbojet
Manufacturer Heinkel
First runSeptember 1943
Major applications Messerschmitt Me P.1101
Number built19

The Heinkel HeS 011 or Heinkel-Hirth 109-011(HeS - Heinkel Strahltriebwerke) was an advanced World War II jet engine built by Heinkel-Hirth. It featured a unique compressor arrangement, starting with a low-compression impeller in the intake, followed by a "diagonal" stage similar to a centrifugal compressor, and then a three-stage axial compressor. Many of the German jet-powered aircraft being designed near the end of the war were designed to use the HeS 011, but the engine itself was not ready for production before the war ended in Europe and only small numbers of prototypes were produced.

Contents

Design and development

Starting in 1936, Junkers started a jet engine development project under the direction of Wagner and Müller[ who? ], who worked on axial compressor designs. By 1940 they had progressed to the point of having a semi-working prototype, which could not run under its own power and required an external supply of compressed air.

Meanwhile, Hans Mauch, in charge of engine development at the RLM, decided that all engine development should take place at existing engine companies. In keeping with this new policy, he forced Junkers to divest itself of their internal engine teams. Müller and half of the existing Junkers team decamped and were happily accepted by Ernst Heinkel, who had started German jet development when he set up a lab for Hans von Ohain in 1937. The two teams worked on their designs in parallel for some time, von Ohain's as the HeS 8 (or 109-001), and the Junkers team as the HeS 30 (109-006). Heinkel's efforts were later re-organized at Hirth Motoren.

Helmut Schelp, who had taken over from Mauch, felt that the BMW 003 and Junkers Jumo 004 would reach production at about the same power levels long before either of the Heinkel projects would be ready, and cancelled both of them. He outlined a new development plan with three engine classes; the 003 and 004 were "Class 1" engines of under 1000 kg thrust suitable for small fighters, but only really useful in twin-engine designs. Schelp was much more interested developing "Class II" engines with thrust in the 1000–2000 kg range, larger designs able to power a full-sized fighter with a single engine. Schelp was also interested in seeing one of his own pet projects, the diagonal compressor, adopted. Schelp had earlier convinced Heinkel to put some effort into another pet project of his, a twin-compressor single-turbine turboprop, but had given up on this and instead offered Heinkel his new concept as a consolation prize.

A Riedel two-stroke APU motor, which was installed atop the 011's intake passage for starting the turbojet Riedelanlasser.jpg
A Riedel two-stroke APU motor, which was installed atop the 011's intake passage for starting the turbojet

In some ways, the HeS 011 can be considered a combination of the two teams' designs, a three-stage axial compressor from Müller's team, combined with a single-stage centrifugal compressor from von Ohain's, the two driven by a single two-stage turbine. The engine operated at somewhat higher thrust levels, about 12 kN (2,700 lbf), as opposed to about 7.8–8.8 kN (1,800–2,000 lbf) thrust for the 003 and 004 respectively. The 011 shared two features with the Jumo 004, with an engine-mounted Riedel two-stroke engine functioning as an APU to get the central shaft turning during engine startup, but mounted above the intake orifice within a Heinkel-crafted prefabricated sheet-metal intake passage instead of inside the intake diverter as the 004 had done, and also had a variable geometry exhaust nozzle, with a restrictive body of differing aerodynamic shape to the 004's Zwiebel (onion) unit, that likewise traveled fore and aft in the nozzle to vary the thrust. [1] Plans were also made for a turboprop version, the HeS 021, but the workload at Heinkel was so high that this project was later given to Daimler-Benz to complete.

Prototypes were available in 1944, and tested using a Heinkel He 111 bomber, mounting the engine on the external hardpoints under the fuselage. Over the next year, practically all German aircraft designers based their projects on the 011, very much as had been done only a year or two previously with projected piston-engined designs, such as those of the twin-engined Bomber B program, widely based on the equally experimental Junkers Jumo 222 twenty-four cylinder powerplant. Advanced high-output (>1,500 kW) aviation piston engines and more advanced turbojets proved to be something the German aviation engine industry would have considerable challenges developing into combat-reliable engines throughout the war years. As a result, and like the nearly three hundred experimental examples built of the complex Jumo 222 piston engine, the HeS 011 turbojet never entered production, with only 19 prototypes built in total. One of these was mounted in the Messerschmitt Me P.1101 that was taken to the United States, forming the basis of the Bell X-5.

In all, only nineteen HeS 011s were completed. [2] Two museum-preserved examples survive in the United States: one at the National Museum of the U.S. Air Force in Dayton, Ohio, and one at the EAA Aviation Museum in Oshkosh, Wisconsin. The Spanish INI patented in 1951 a similar design (ES197663), [3] on exhibition at Cuatro Vientos Air Museum in Madrid.

Variants

109-011 V1
Initial prototype, delivering 10.9 kN (2459 lbf) thrust at 9920 RPM [4]
109-011 A-0
Pre-production variant, intended to provide 12.7 kN (2866.5 lbf) at 11000 RPM [5]
109-011 B
Improved variant, intended to provide 14.7 kN (3307 lbf) thrust, not built. [6]
109-011 C
Improved variant to provide 16.7 kN (3748 lbf) thrust, not built. [6]
109-021
Planned turboprop derivative (subcontracted to Daimler-Benz) to provide 2,427 kw (3300 hp); intended for Focke Wulf Fw 281, not built. [7]

Applications

Aircraft designs intended to be powered by the HeS 011:

Specifications (109-011 A-0)

General characteristics

Components

Performance

See also

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Hans von Ohain</span> German aerospace engineer (1911–1998)

Hans Joachim Pabst von Ohain was a German physicist, engineer, and the designer of the first aircraft to use a turbojet engine. Together with Frank Whittle and Anselm Franz, he has been described as the co-inventor of the turbojet engine. However, the historical timelines show that von Ohain was still a university student when, in January 1930, Whittle filed his first patent for a turbojet engine and successfully tested his first engine in April 1937, some 6 months before von Ohain. Additionally, prior to designing his engine and filing his own patent in 1935, von Ohain had read and critiqued Whittle's patents. Von Ohain stated in his biography that "My interest in jet propulsion began in the fall of 1933 when I was in my seventh semester at Göttingen University. I didn't know that many people before me had the same thought." Unlike Whittle, von Ohain had the significant advantage of being supported by an aircraft manufacturer, Heinkel, who funded his work.

<span class="mw-page-title-main">Junkers Jumo 004</span> Early turbojet aircraft engine

The Junkers Jumo 004 was the world's first production turbojet engine in operational use, and the first successful axial compressor turbojet engine. Some 8,000 units were manufactured by Junkers in Germany late in World War II, powering the Messerschmitt Me 262 fighter and the Arado Ar 234 reconnaissance/bomber, along with prototypes, including the Horten Ho 229. Variants and copies of the engine were produced in Eastern Europe and the USSR for several years following the end of WWII.

<span class="mw-page-title-main">BMW 003</span> Early German axial turbojet engine

The BMW 003 is an early axial turbojet engine produced by BMW AG in Germany during World War II. The 003 and the Junkers Jumo 004 were the only German turbojet engines to reach production during World War II.

<span class="mw-page-title-main">Heinkel He 280</span> Experimental jet aircraft

Originally called the He 180, the Heinkel He 280 was an early turbojet-powered fighter aircraft designed and produced by the German aircraft manufacturer Heinkel. It was the first jet fighter to fly in the world.

<span class="mw-page-title-main">Messerschmitt Me 328</span> German parasite fighter prototypes

The Messerschmitt Me 328 was a prototype pulsejet-powered fighter aircraft designed and produced by the German aircraft manufacturer Messerschmitt AG.

<span class="mw-page-title-main">Henschel Hs 132</span> 1945 prototype multi-role combat aircraft by Henschel

The Henschel Hs 132 was a World War II dive bomber and interceptor aircraft of the German Luftwaffe that never saw service. The unorthodox design featured a top-mounted BMW 003 jet engine and the pilot in a prone position. The Soviet Army occupied the factory just as the Hs 132 V1 was nearing flight testing, the V2 and V3 being 80% and 75% completed.

This article outlines the important developments in the history of the development of the air-breathing (duct) jet engine. Although the most common type, the gas turbine powered jet engine, was certainly a 20th-century invention, many of the needed advances in theory and technology leading to this invention were made well before this time.

<span class="mw-page-title-main">Emergency Fighter Program</span> Fighter aircraft design competition in Germany during WW2.

The Emergency Fighter Program was the program that resulted from a decision taken on July 3, 1944 by the Luftwaffe regarding the German aircraft manufacturing companies during the last year of the Third Reich.

The HeS 30(HeS - Heinkel Strahltriebwerke) was an early jet engine, originally designed by Adolf Müller at Junkers, but eventually built and tested at Heinkel. It was possibly the best of the "Class I" engines, a class that included the more famous BMW 003 and Junkers Jumo 004. As it started somewhat later than these two designs, and was thus expected to enter service later, the Reichluftfahrtministerium (RLM) ordered Heinkel to stop work on the design and put their efforts into more advanced designs.

Helmut Schelp was the director of advanced engine development at the RLM's T-Amt technical division leading up to and during World War II. He used his office to fund a widespread program in jet engine development, which led to many of the engine concepts still used today. In particular, he was instrumental in favoring the use of axial compressors over the simpler but "fatter" centrifugal compressors. Unlike in England where the jet had no single champion within the Air Ministry and their efforts were long delayed as a result, Schelp can be directly credited with the advancement and refinement of the jet in Germany over a few years.

<span class="mw-page-title-main">Heinkel HeS 3</span>

The Heinkel HeS 3 was the world's first operational jet engine to power an aircraft. Designed by Hans von Ohain while working at Heinkel, the engine first flew as the primary power of the Heinkel He 178, piloted by Erich Warsitz on 27 August 1939. Although successful, the engine had too little thrust to be really useful, and work started on the more powerful Heinkel HeS 8 as their first production design.

<span class="mw-page-title-main">Heinkel HeS 8</span> Jet engine

The Heinkel HeS 8 was an early jet engine designed by Hans von Ohain while working at Heinkel. It was the first jet engine to be financially supported by the RLM, bearing the official name 109-001. Had development continued it would have been known as the Heinkel 001, but it does not appear this was used in practice.

<span class="mw-page-title-main">Blohm & Voss P 194</span> Type of aircraft

The Blohm & Voss P 194 was a German design for a mixed-power Stuka or ground-attack aircraft and tactical bomber, during World War II.

The Lyulka TR-1 was a turbojet designed by Arkhip Lyulka and produced by his Lyulka design bureau. It was the first indigenous Soviet jet engine.

<span class="mw-page-title-main">Messerschmitt P.1110</span> German high-altitude interceptor project

The Messerschmitt P.1110 was a design for a single-seat, high-altitude interceptor, prepared for the German Luftwaffe by the Messerschmitt aircraft manufacturing company, under the Emergency Fighter Program during the last months of World War II.

The Junkers Jumo 109-012, known colloquially post-war as Jumo 012, was a turbojet engine under development in Germany during the Second World War. In essence, it was a scaled up version of the Jumo 004. It was intended to power the EF 132 and variants of the Ju 287.

<span class="mw-page-title-main">Messerschmitt Me 262 variants</span> Variants of the Messerschmitt Me 262

The Messerschmitt Me 262 was a German World War II fighter aircraft built by Messerschmitt in the later stages of the war, and under license by Avia post-war.

References

Notes

  1. Quinto_Sertorio (March 20, 2010). "German Aviation Engines, SGM". elgrancapitan.org (in Spanish). Retrieved October 31, 2012.
  2. Christopher, p. 74
  3. ES197663 www.oepm.es
  4. Kay 2002, p. 42
  5. Kay 2002, p. 51
  6. 1 2 Radinger & Schick, p. 169
  7. "German Military Aircraft Designations (1933-1945)". www.designation-systems.net. Retrieved 13 October 2023.

Bibliography