Heuristic routing

Last updated

Heuristic routing is a system used to describe how deliveries are made when problems in a network topology arise. Heuristic is an adjective used in relation to methods of learning, discovery, or problem solving. Routing is the process of selecting paths to specific destinations. Heuristic routing is used for traffic in the telecommunications networks and transport networks of the world.

Contents

Heuristic routing is achieved using specific algorithms to determine a better, although not always optimal, path to a destination. When an interruption in a network topology occurs, the software running on the networking electronics can calculate another route to the desired destination via an alternate available path.

According to Shuster & Schur (1974 , p. 1):

The heuristic approach to problem solving consists of applying human intelligence, experience, common sense and certain rules of thumb (or heuristics) to develop an acceptable, but not necessarily an optimum, solution to a problem. Of course, determining what constitutes an acceptable solution is part of the task of deciding which approach to use; but broadly defined, an acceptable solution is one that is both reasonably good (close to optimum) and derived within reasonable effort, time, and cost constraints. Often the effort (manpower, computer, and other resources) required, the time limits on when the solution is needed, and the cost to compile, process, and analyze all the data required for deterministic or other complicated procedures preclude their usefulness or favor the faster, simpler heuristic approach. Thus, the heuristic approach is generally used when deterministic techniques or are not available, economical, or practical.

Heuristic routing allows a measure of route optimization in telecommunications networks based on recent empirical knowledge of the state of the network. Data, such as time delay, may be extracted from incoming messages, during specified periods and over different routes, and used to determine the optimum routing for transmitting data back to the sources.

IP routing

The IP routing protocols in use today are based on one of two algorithms: distance vector or link state. Distance vector algorithms broadcast routing information to all neighboring routers. Link state routing protocols build a topographical map of the entire network based on updates from neighbor routers, and then use the Dijkstra algorithm to compute the shortest path to each destination. Metrics used are based on the number of hops, delay, throughput, traffic, and reliability.

Distance vector algorithms

See also

Related Research Articles

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

Travelling salesman problem NP-hard problem in combinatorial optimization

The travelling salesman problem asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in theoretical computer science and operations research.

Shortest path problem Computational problem of graph theory

In graph theory, the shortest path problem is the problem of finding a path between two vertices in a graph such that the sum of the weights of its constituent edges is minimized.

Dijkstras algorithm Graph search algorithm

Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. Functionality of EIGRP was converted to an open standard in 2013 and was published with informational status as RFC 7868 in 2016.

Greedy algorithm computer science heuristics that makes the locally optimal choice at each stage

A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not usually produce an optimal solution, but nonetheless, a greedy heuristic may yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

A* is a graph traversal and path search algorithm, which is often used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms which can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases.

A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass, one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers, on which a distance-vector protocol is implemented, exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router informs its neighbours of network topology changes periodically.

Optimized Link State Routing Protocol

The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.

Transport network analysis

A transport network, or transportation network is a network or graph in geographic space, describing an infrastructure that permits and constrains movement or flow. Examples include but are not limited to road networks, railways, air routes, pipelines, aqueducts, and power lines. The digital representation of these networks, and the methods for their analysis, is a core part of spatial analysis, geographic information systems, public utilities, and transport engineering. Network analysis is an application of the theories and algorithms of Graph theory and is a form of proximity analysis.

IP traceback is any method for reliably determining the origin of a packet on the Internet. The IP protocol does not provide for the authentication of the source IP address of an IP packet, enabling the source address to be falsified in a strategy called IP address spoofing, and creating potential internet security and stability problems.

The routing and wavelength assignment (RWA) problem is an optical networking problem with the goal of maximizing the number of optical connections.

Pathfinding Plotting by a computer application

Pathfinding or pathing is the plotting, by a computer application, of the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.

Destination-Sequenced Distance-Vector Routing (DSDV) is a table-driven routing scheme for ad hoc mobile networks based on the Bellman–Ford algorithm. It was developed by C. Perkins and P.Bhagwat in 1994. The main contribution of the algorithm was to solve the routing loop problem. Each entry in the routing table contains a sequence number, the sequence numbers are generally even if a link is present; else, an odd number is used. The number is generated by the destination, and the emitter needs to send out the next update with this number. Routing information is distributed between nodes by sending full dumps infrequently and smaller incremental updates more frequently.

In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path.

The MENTOR routing algorithm is an algorithm for use in routing of mesh networks, specifically pertaining to their initial topology. It was developed in 1991 by Aaron Kershenbaum, Parviz Kermani, and George A. Grove and was published by the IEEE.

In mathematical optimization and computer science, heuristic is a technique designed for solving a problem more quickly when classic methods are too slow, or for finding an approximate solution when classic methods fail to find any exact solution. This is achieved by trading optimality, completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.

Vehicle rescheduling problem

The vehicle rescheduling problem (VRSP) is a combinatorial optimization and integer programming problem seeking to service customers on a trip after change of schedule such as vehicle break down or major delay. Proposed by Li, Mirchandani and Borenstein in 2007, the VRSP is an important problem in the fields of transportation and logistics.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References

PD-icon.svg This article incorporates  public domain material from the General Services Administration document: "Federal Standard 1037C".