This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
IP routing is the application of routing methodologies to IP networks. This involves not only protocols and technologies but includes the policies of the worldwide organization and configuration of Internet infrastructure. In each IP network node, IP routing involves the determination of a suitable path for a network packet from a source to its destination in an IP network. The process uses static configuration rules or dynamically obtained from routing protocols to select specific packet forwarding methods to direct traffic to the next available intermediate network node one hop closer to the desired final destination, a total path potentially spanning multiple computer networks.
Networks are separated from each other by specialized hosts, called gateways or routers with specialized software support optimized for routing. IP forwarding algorithms in most routing software determine a route through a shortest path algorithm. In routers, packets arriving at an interface are examined for source and destination addressing and queued to the appropriate outgoing interface according to their destination address and a set of rules and performance metrics. Rules are encoded in a routing table that contains entries for all interfaces and their connected networks. If no rule satisfies the requirements for a network packet, it is forwarded to a default route. Routing tables are maintained either manually by a network administrator, or updated dynamically by a routing protocol.
A routing protocol specifies how routers communicate and share information about the topology of the network, and the capabilities of each routing node. Different protocols are often used for different topologies or different application areas. For example, the Open Shortest Path First (OSPF) protocol is generally used within an enterprise and the Border Gateway Protocol (BGP) is used on a global scale. [1] BGP is the de facto standard for worldwide Internet routing.
Routing protocols may be broadly distinguished by their realm of operation in terms of network scope. Interior gateway protocols are used for routing within autonomous systems, while exterior gateway protocols route traffic between them. The former group is exemplified by the Routing Information Protocol (RIP) and Open Shortest Path First (OSPF), while the Exterior Gateway Protocol (EGP) and the Border Gateway Protocol (BGP) are examples of the exterior type. BGP is the dominant route distribution protocol used on the Internet.
The IP forwarding algorithm is a specific implementation of routing for IP networks. In order to achieve a successful transfer of data, the algorithm uses a routing table to select a next-hop router as the next destination for a datagram. The IP address of the selected router is known as the next-hop address. [1]
The IP forwarding algorithm states: [2]
When multiple route table entries match, the entry with the longest subnet mask is chosen as it is the most specific one. [2] If there are multiple routes with the same subnet mask, the route with the lowest metric is used. If there are multiple default routes, the metric is also used to determine which to use. If there are multiple routes with the same subnet mask and metric, the system may use equal-cost multi-path routing as a forwarding strategy.
When no route is available, an ICMP error message is sent to the originator of the packet, [2] to inform that host that the packet could not be delivered. To avoid unnecessary retransmission to avoid network congestion, the sending host should either stop transmitting or choose another address or route.
The following presents a typical routing table in a Unix-like operating system:
Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 71.46.14.1 0.0.0.0 UG 0 0 0 ppp0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 71.46.14.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 172.16.0.0 0.0.0.0 255.240.0.0 U 0 0 0 eth0 192.168.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 192.168.1.0 192.168.96.1 255.255.255.0 UG 0 0 0 eth0 192.168.96.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
The host has several network interfaces. eth0 is the interface name of the network interface card representing an Ethernet port. ppp0 is a PPPoE interface, which is configured as the default route in this example.
A default route is recognized by the destination 0.0.0.0 and the flag G. A network router is identified by the network mask 255.255.255.255 and the flag H.
Flag | Description |
---|---|
G | Use Gateway (gateway filled in) |
H | Target is a Host (bitmask of 32 bits) |
U | Route is Up |
Interior Gateway Routing Protocol (IGRP) is a distance vector interior gateway protocol (IGP) developed by Cisco. It is used by routers to exchange routing data within an autonomous system.
An Internet Protocol address is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.
The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating success or failure when communicating with another IP address. For example, an error is indicated when a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.
Internet Protocol version 4 (IPv4) is the first version of the Internet Protocol (IP) as a standalone specification. It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.
A router is a computer and networking device that forwards data packets between computer networks, including internetworks such as the global Internet.
Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.
Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.
Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).
The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.
In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.
Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. In 2013, Cisco permitted other vendors to freely implement a limited version of EIGRP with some of its associated features such as High Availability (HA), while withholding other EIGRP features such as EIGRP stub, needed for DMVPN and large-scale campus deployment. Information needed for implementation was published with informational status as RFC 7868 in 2016, which did not advance to Internet Standards Track level, and allowed Cisco to retain control of the EIGRP protocol.
A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass; one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network, routers using a distance-vector protocol exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router inform its neighbours of network topology changes periodically.
A broadcast address is a network address used to transmit to all devices connected to a multiple-access communications network. A message sent to a broadcast address may be received by all network-attached hosts.
Longest prefix match refers to an algorithm used by routers in Internet Protocol (IP) networking to select an entry from a routing table.
A default gateway is the node in a computer network using the Internet protocol suite that serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet.
In computer networking, the default route is a configuration of the Internet Protocol (IP) that establishes a forwarding rule for packets when no specific address of a next-hop host is available from the routing table or other routing mechanisms.
anoNet is a decentralized friend-to-friend network built using VPNs and software BGP routers. anoNet works by making it difficult to learn the identities of others on the network allowing them to anonymously host IPv4 and IPv6 services. One of the primary goals of anoNet is to protect its participants' rights of speech and expression.
A routing protocol specifies how routers communicate with each other to distribute information that enables them to select paths between nodes on a computer network. Routers perform the traffic directing functions on the Internet; data packets are forwarded through the networks of the internet from router to router until they reach their destination computer. Routing algorithms determine the specific choice of route. Each router has a prior knowledge only of networks attached to it directly. A routing protocol shares this information first among immediate neighbors, and then throughout the network. This way, routers gain knowledge of the topology of the network. The ability of routing protocols to dynamically adjust to changing conditions such as disabled connections and components and route data around obstructions is what gives the Internet its fault tolerance and high availability.
In network routing, the control plane is the part of the router architecture that is concerned with establishing the network topology, or the information in a routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. In most cases, the routing table contains a list of destination addresses and the outgoing interface(s) associated with each. Control plane logic also can identify certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.
In computing, route
is a command used to view and manipulate the IP routing table in Unix-like and Microsoft Windows operating systems and also in IBM OS/2 and ReactOS. Manual manipulation of the routing table is characteristic of static routing.