The hiding power is an ability of a paint to hide the surface that the paint was applied to. [1] Numerically, it is defined as an area of surface coated by a volume of paint (spreading rate) at which the "complete hiding" of the underlying surface occurs. [2]
Whenever light is shone onto a paint-coated surface, it is partially reflected and absorbed by the coating. Once the light reaches the underlying surface (substrate), it is again reflected and absorbed by the substrate, the process happens once more as the reflected light travels back through the paint layer. Depending on the paint properties, the information about the substrate might be visible (or not) in the light that emerges back from the coating. Hiding power is the property of the paint material that inhibits this visibility, manifesting in the opacity of a layer of paint. The term hiding is generic and applied to designate either hiding power or opacity. [3]
If the coating of paint is highly absorptive, the color of the coating will be dark and the hiding will be provided by the absorption. If the coating is highly reflective, the color of the surface will be light in color, but still will hide the substrate well, with the hiding being the result of light scattering. If the paint layer exhibits low absorption and scattering, light will travel through the layer and reveal the substrate (low opacity or poor hiding). [3]
The hiding power is measured by applying the coating to the black-and-white (occasionally gray-and-white) panels and using either the photometric or visual observation. [3] Since the eye cannot make the quantitative assessments, yet is very sensitive to the presence of contrast, the measurements are made by varying the paint film thickness, determined by the amount of area that is coated by a certain amount of paint (so called spreading rate, typically measured in square meters per liter). [4]
For the photometry the black and white substrates are calibrated to have, respectively, 1% and 80% reflectivity. The result, a contrast ratio, is expressed as a ratio of the intensity of light reflected from the darker area to the one from the lighter area (technically, the CIE Y or "luminance" is measured). The same substrates are used for the visual measurements. [3]
The hiding power is numerically defined as a spreading rate at which the contrast between the different areas of substrate becomes impossible to see or measure (complete hiding). In practice, an approximated end-point is used instead, for the photometric contrast ratio it is 98%. [5]
The Kubelka–Munk theory was developed in the 1930s and is still widely used in the 21st century. This simplified version of the radiative transfer theory reduces the paint properties to just two coefficients, one for scattering and one for absorption. [6] Once these coefficients are known, the hiding power can be calculated. [7] The longevity of the method is due to the ease of calculating these constants using the optical reflectometry [6] (measurement of just one application of paint with incomplete hide on a black-and-white drawdown chart for each light wavelength is required). [8] The model uses many assumptions, including the diffuse illumination, no reflections on the film/air and film/substrate interfaces, reasonable thickness of the paint layer. [9]
Historically, the measurements were made directly using devices such as the Pfund cryptometer (introduced in 1930, earlier "all-black" model is from 1919) that places wet paint into a wedge-like arrangement of plates over the black-and-white background; the wedge is moved over the boundary until the boundary line becomes invisible. [10]
The direct measurements are still in demand where the real-world constraints of an uneven paint application are present, for example, the painting of buildings inevitably involves unevenness of the paint thickness due to the texture of a brush or a roller. The resulting perceived opacity is sometimes called an applied hiding power. ASTM D5150 standard calls for a use of a special panel with stripes of different shades of gray, each stripe has its own "rating". The paint is applied across the stripes, the largest rating of the completely hidden stripes is the hiding power for the paint. Paint producers use variations of this method. [11]
Almost all the hiding power of the paint is due to the pigment (binders are typically clear). In general, the hiding power of a pigment is closely related to scattering of light by its particles while suspended in the binder. The scattering on the interface between two substances is higher when there is a larger difference between their refractive indices. [2] The refractive index of a binder is low, about 1.5, so the hiding power of a pigment usually increases with higher values of its refractive index. [17]
White pigments absorb the light poorly. However, if dispersed in a binder some of them, with low refractive indices (about 1.5), [17] while appearing white in the air (with a refractive index of 1.0), exhibit almost no scattering in the paint and thus no hiding power - these are so called "extenders". The white pigments with higher refractive indices deliver opacity and thus are classified as hiding pigments. [2]
Acrylic paint is a fast-drying paint made of pigment suspended in acrylic polymer emulsion and plasticizers, silicone oils, defoamers, stabilizers, or metal soaps. Most acrylic paints are water-based, but become water-resistant when dry. Depending on how much the paint is diluted with water, or modified with acrylic gels, mediums, or pastes, the finished acrylic painting can resemble a watercolor, a gouache, or an oil painting, or have its own unique characteristics not attainable with other media.
Paint is a liquid pigment that, after application to a solid material, and allowed to dry, adds a film-like layer to protect, add color, or provide texture. Paint can be made in many colors—and in many different types. Most paints are either oil-based or water-based, and each has distinct characteristics.
Titanium dioxide, also known as titanium(IV) oxide or titania, is the inorganic compound with the chemical formula TiO
2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. It is a white solid that is insoluble in water, although mineral forms can appear black. As a pigment, it has a wide range of applications, including paint, sunscreen, and food coloring. When used as a food coloring, it has E number E171. World production in 2014 exceeded 9 million tonnes. It has been estimated that titanium dioxide is used in two-thirds of all pigments, and pigments based on the oxide have been valued at a price of $13.2 billion.
Whitewash, or calcimine, kalsomine, calsomine, or lime paint is a type of paint made from slaked lime (calcium hydroxide, Ca(OH)2) or chalk (calcium carbonate, CaCO3), sometimes known as "whiting". Various other additives are sometimes used.
Diffuse reflection is the reflection of light or other waves or particles from a surface such that a ray incident on the surface is scattered at many angles rather than at just one angle as in the case of specular reflection. An ideal diffuse reflecting surface is said to exhibit Lambertian reflection, meaning that there is equal luminance when viewed from all directions lying in the half-space adjacent to the surface.
Wood stain is a type of paint used to colour wood comprising colourants dissolved and/or suspended in a vehicle or solvent. Pigments and/or dyes are largely used as colourants in most stains.
ChromaFlair is a pigment used in paint systems, primarily for automobiles. When the paint is applied, it changes color depending on the light source and viewing angle. It was created at JDS Uniphase and is used by DuPont and PPG.
Gloss is an optical property which indicates how well a surface reflects light in a specular (mirror-like) direction. It is one of the important parameters that are used to describe the visual appearance of an object. Other categories of visual appearance related to the perception of regular or diffuse reflection and transmission of light have been organized under the concept of cesia in an order system with three variables, including gloss among the involved aspects. The factors that affect gloss are the refractive index of the material, the angle of incident light and the surface topography.
Silicate mineral paints or mineral colors are paint coats with mineral binding agents. Two relevant mineral binders play a role in the field of colors: Lime and silicate.
Diffuse reflectance spectroscopy, or diffuse reflection spectroscopy, is a subset of absorption spectroscopy. It is sometimes called remission spectroscopy. Remission is the reflection or back-scattering of light by a material, while transmission is the passage of light through a material. The word remission implies a direction of scatter, independent of the scattering process. Remission includes both specular and diffusely back-scattered light. The word reflection often implies a particular physical process, such as specular reflection.
Sheen is a measure of the reflected light (glossiness) from a paint finish. Glossy and flat are typical extreme levels of glossiness of a finish. Gloss paint is shiny and reflects most light in the specular (mirror-like) direction, while on flat paints most of the light diffuses in a range of angles. The gloss level of paint can also affect its apparent colour.
A glossmeter is an instrument which is used to measure specular reflection gloss of a surface. Gloss is determined by projecting a beam of light at a fixed intensity and angle onto a surface and measuring the amount of reflected light at an equal but opposite angle.
In the paint and coating industries, paint adhesion testing is often used to determine if the paint or coating will adhere properly to the substrates to which they are applied. Several tests measure the resistance of paints and coatings from substrates: cross-cut test, scrape adhesion, pull-off test, and others.
An anti-graffiti coating is a coating that prevents graffiti paint from bonding to surfaces.
Picture framing glass usually refers to flat glass or acrylic ("plexi") used for framing artwork and for presenting art objects in a display box.
Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is an infrared spectroscopy sampling technique used on powder samples without prior preparation. The sample is added to a sample cup and the data is collected on the bulk sample. The infrared light on a sample is reflected and transmitted at different amounts depending on the bulk properties of the material. Diffuse reflection of the incident light produced by the sample's rough surface reflection in all directions is collected by use of an ellipsoid or paraboloid mirror. Shape, compactness, refractive index, reflectivity and absorption of the particles are all characteristic of the material being analyzed. If the sample is too absorbent, then it can be diluted with a nonabsorbent material such as potassium bromide, potassium chloride, etc. The particle size should be smaller than the wavelength of the incident light in order to minimize Mie scattering, so this would infer that it should be less than 5 µm for mid-infrared spectroscopy. The spectra are plotted in units of log inverse reflectance versus wavenumber. Alternative plots of Kubelka-Munk units can be used, which relate reflectance to concentration using a scaling factor. A reflectance standard is needed in order to quantify the reflectance of the sample because it cannot be determined directly.
The surface chemistry of paper is responsible for many important paper properties, such as gloss, waterproofing, and printability. Many components are used in the paper-making process that affect the surface.
Paint mixing is the practice of mixing components or colors of paint to combine them into a working material and achieve a desired hue. The components that go into paint mixing depend on the function of the product sought to be produced. For example, a painter of portraits or scenery on a canvas may be seeking delicate hues and subtle gradiations, while the painter of a house may be more concerned with durability and consistency of colors in paints presented to customers, and the painter of a bridge or a ship may have the weatherability of the paint as their primary concern.
There are two different types of haze that can occur in materials:
The Kubelka-Munk theory, devised by Paul Kubelka and Franz Munk, is a fundamental approach to modelling the appearance of paint films. As published in 1931, the theory addresses "the question of how the color of a substrate is changed by the application of a coat of paint of specified composition and thickness, and especially the thickness of paint needed to obscure the substrate". The mathematical relationship involves just two paint-dependent constants.