High throughput biology

Last updated

High throughput biology (or high throughput cell biology) is the use of automation equipment with classical cell biology techniques to address biological questions that are otherwise unattainable using conventional methods. It may incorporate techniques from optics, chemistry, biology or image analysis to permit rapid, highly parallel research into how cells function, interact with each other and how pathogens exploit them in disease. [1]

Contents

High throughput cell biology has many definitions, but is most commonly defined by the search for active compounds in natural materials like in medicinal plants. This is also known as high throughput screening (HTS) and is how most drug discoveries are made today, many cancer drugs, antibiotics, or viral antagonists have been discovered using HTS. [2] The process of HTS also tests substances for potentially harmful chemicals that could be potential human health risks. [3] HTS generally involves hundreds of samples of cells with the model disease and hundreds of different compounds being tested from a specific source. Most often a computer is used to determine when a compound of interest has a desired or interesting effect on the cell samples.

Using this method has contributed to the discovery of the drug Sorafenib (Nexavar). Sorafenib is used as medication to treat multiple types of cancers, including renal cell carcinoma (RCC, cancer in the kidneys), hepatocellular carcinoma (liver cancer), and thyroid cancer. It helps stop cancer cells from reproducing by blocking the abnormal proteins present. In 1994, high throughput screening for this particular drug was completed. It was initially discovered by Bayer Pharmaceuticals in 2001. By using a RAF kinase biochemical assay, 200,000 compounds were screened from medicinal chemistry directed synthesis or combinatorial libraries to identify active molecules against activeRAF kinase. Following three trials of testing, it was found to have anti-angiogenic effects on the cancers, which stops the process of creating new blood vessels in the body. [4] [5]

Another discovery made using HTS is Maraviroc. It is an HIV entry inhibitor, and slows the process and prevents HIV from being able to enter human cells. [6] It is used to treat a variety of cancers as well, reducing or blocking the metastasis of cancer cells, which is when cancer cells spread to a completely different part of the body from where it started. High throughput screening for Maraviroc was completed in 1997, and finalized in 2005 by Pfizer global research and development team.

High-throughput biology serves as one facet of what has also been called "omics research" - the interface between large scale biology (genome, proteome, transcriptome), technology and researchers. High throughput cell biology has a definite focus on the cell, and methods accessing the cell such as imaging, gene expression microarrays, or genome wide screening. The basic idea is to take methods normally performed on their own and do a very large number of them without impacting their quality [7]

High throughput research can be defined as the automation of experiments such that large scale repetition becomes feasible. This is important because many of the questions faced by life science researchers now involve large numbers. For example, the Human Genome contains at least 21,000 genes, [8] all of which can potentially contribute to cell function, or disease. To be able to capture an idea of how these genes interact with one another, which genes are involved in and where they are, methods that encompass from the cell to the genome are of interest.

Use of robotics

Classical High throughput screening robotics are now being tied closer to cell biology, principally using technologies such as High-content screening. High throughput cell biology dictates methods that can take routine cell biology from low scale research to the speed and scale necessary to investigate complex systems, achieve high sample size, or efficiently screen through a collection.

Use of microscopy and cytometry

High-content screening technology is mainly based on automated digital microscopy and flow cytometry, in combination with IT-systems for the analysis and storage of the data. "High-content" or visual biology technology has two purposes, first to acquire spatially or temporally resolved information on an event and second to automatically quantify it. Spatially resolved instruments are typically automated microscopes, and temporal resolution still requires some form of fluorescence measurement in most cases. This means that a lot of HCS instruments are (fluorescence) microscopes that are connected to some form of image analysis package. These take care of all the steps in taking fluorescent images of cells and provide rapid, automated and unbiased assessment of experiments.

Development of technology

The technology can be defined as being at the same development point as the first automated DNA sequencers in the early 1990s. Automated DNA sequencing was a disruptive technology when it became practical and -even if early devices had shortcomings- it enabled genome scale sequencing projects and created the field of bioinformatics. The impact of a similarly disruptive and powerful technology on molecular cell biology and translational research is hard to predict but what is clear is that it will cause a profound change in the way cell biologists research and medicines are discovered.

See also

Related Research Articles

Bioinformatics Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, chemistry, physics, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for in silico analyses of biological queries using computational and statistical techniques.

Reporter gene Technique in molecular biology

In molecular biology, a reporter gene is a gene that researchers attach to a regulatory sequence of another gene of interest in bacteria, cell culture, animals or plants. Such genes are called reporters because the characteristics they confer on organisms expressing them are easily identified and measured, or because they are selectable markers. Reporter genes are often used as an indication of whether a certain gene has been taken up by or expressed in the cell or organism population.

Drug discovery Process by which new candidate medications are discovered

In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered.

High-throughput screening Drug discovery experimental technique

High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handling devices, and sensitive detectors, high-throughput screening allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. Through this process one can quickly recognize active compounds, antibodies, or genes that modulate a particular biomolecular pathway. The results of these experiments provide starting points for drug design and for understanding the noninteraction or role of a particular location.

In molecular biology, an amplicon is a piece of DNA or RNA that is the source and/or product of amplification or replication events. It can be formed artificially, using various methods including polymerase chain reactions (PCR) or ligase chain reactions (LCR), or naturally through gene duplication. In this context, amplification refers to the production of one or more copies of a genetic fragment or target sequence, specifically the amplicon. As it refers to the product of an amplification reaction, amplicon is used interchangeably with common laboratory terms, such as "PCR product."

In silico Latin phrase referring to computer simulations

In biology and other experimental sciences, an in silico experiment is one performed on computer or via computer simulation. The phrase is pseudo-Latin for 'in silicon', referring to silicon in computer chips. It was coined in 1987 as an allusion to the Latin phrases in vivo, in vitro, and in situ, which are commonly used in biology. The latter phrases refer, respectively, to experiments done in living organisms, outside living organisms, and where they are found in nature.

Antibody microarray

An antibody microarray is a specific form of protein microarray. In this technology, a collection of captured antibodies are spotted and fixed on a solid surface such as glass, plastic, membrane, or silicon chip, and the interaction between the antibody and its target antigen is detected. Antibody microarrays are often used for detecting protein expression from various biofluids including serum, plasma and cell or tissue lysates. Antibody arrays may be used for both basic research and medical and diagnostic applications.

High-content screening (HCS), also known as high-content analysis (HCA) or cellomics, is a method that is used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell in a desired manner. Hence high content screening is a type of phenotypic screen conducted in cells involving the analysis of whole cells or components of cells with simultaneous readout of several parameters. HCS is related to high-throughput screening (HTS), in which thousands of compounds are tested in parallel for their activity in one or more biological assays, but involves assays of more complex cellular phenotypes as outputs. Phenotypic changes may include increases or decreases in the production of cellular products such as proteins and/or changes in the morphology of the cell. Hence HCA typically involves automated microscopy and image analysis. Unlike high-content analysis, high-content screening implies a level of throughput which is why the term "screening" differentiates HCS from HCA, which may be high in content but low in throughput.

Hit to lead (H2L) also known as lead generation is a stage in early drug discovery where small molecule hits from a high throughput screen (HTS) are evaluated and undergo limited optimization to identify promising lead compounds. These lead compounds undergo more extensive optimization in a subsequent step of drug discovery called lead optimization (LO). The drug discovery process generally follows the following path that includes a hit to lead stage:

The Cancer Genome Project is part of the cancer, aging, and somatic mutation research based at the Wellcome Trust Sanger Institute in The United Kingdom. It aims to identify sequence variants/mutations critical in the development of human cancers. Like The Cancer Genome Atlas project within the United States, the Cancer Genome Project represents an effort in the War on Cancer to improve cancer diagnosis, treatment, and prevention through a better understanding of the molecular basis of the disease. The Cancer Genome Project was launched by Michael Stratton in 2000, and Peter Campbell is now the group leader of the project. The project works to combine knowledge of the human genome sequence with high throughput mutation detection techniques.

In statistics, the strictly standardized mean difference (SSMD) is a measure of effect size. It is the mean divided by the standard deviation of a difference between two random values each from one of two groups. It was initially proposed for quality control and hit selection in high-throughput screening (HTS) and has become a statistical parameter measuring effect sizes for the comparison of any two groups with random values.

In high-throughput screening (HTS), one of the major goals is to select compounds with a desired size of inhibition or activation effects. A compound with a desired size of effects in an HTS screen is called a hit. The process of selecting hits is called hit selection.

STARR-seq

STARR-seq is a method to assay enhancer activity for millions of candidates from arbitrary sources of DNA. It is used to identify the sequences that act as transcriptional enhancers in a direct, quantitative, and genome-wide manner.

A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments, a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. These three-dimensional cultures are usually grown in bioreactors, small capsules in which the cells can grow into spheroids, or 3D cell colonies. Approximately 300 spheroids are usually cultured per bioreactor.

Molecular diagnostics Collection of techniques used to analyze biological markers in the genome and proteome

Molecular diagnostics is a collection of techniques used to analyze biological markers in the genome and proteome, and how their cells express their genes as proteins, applying molecular biology to medical testing. In medicine the technique is used to diagnose and monitor disease, detect risk, and decide which therapies will work best for individual patients, and in agricultural biosecurity similarly to monitor crop- and livestock disease, estimate risk, and decide what quarantine measures must be taken.

Wound healing assay

A wound healing assay is a laboratory technique used to study cell migration and cell–cell interaction. This is also called a scratch assay because it is done by making a scratch on a cell monolayer and capturing images at regular intervals by time lapse microscope.

Aurora Biosciences

Aurora Biosciences was a biotechnology company founded in 1995 in San Diego to commercialize fluorescence assays based on Roger Y. Tsien's discoveries concerning green fluorescent protein and its uses in basic research - work for which Tsien eventually won the 2008 Nobel Prize in chemistry along with two other chemists.

James Inglese American biochemist

James Inglese is an American biochemist, the director of the Assay Development and Screening Technology laboratory at the National Center for Advancing Translational Sciences, a Center within the National Institutes of Health. His specialty is small molecule high throughput screening. Inglese's laboratory develops methods and strategies in molecular pharmacology with drug discovery applications. The work of his research group and collaborators focuses on genetic and infectious disease-associated biology.

Anne E. Carpenter American scientist

Anne E. Carpenter is an American scientist in the field of image analysis for cell biology and artificial intelligence for drug discovery. She is the co-creator of CellProfiler, open-source software for high-throughput biological image analysis, and a co-inventor of the Cell Painting assay, a method for image-based profiling. She is a PI and senior director of the Imaging Platform at the Broad Institute.

Gerardo Turcatti Swiss-Uruguayan chemical biologist and pharmacologist

Gerardo Turcatti is a Swiss-Uruguayan chemist who specialises in chemical biology and drug discovery. He is a professor at the École Polytechnique Fédérale de Lausanne (EPFL) and director of the Biomolecular Screening Facility at the School of Life Sciences there.

References

  1. Hsiao, A., & Kuo, M. D. (2009). High-throughput Biology in the Postgenomic Era. Journal of Vascular and Interventional Radiology, 20(7), S488–S496. https://doi.org/10.1016/j.jvir.2009.04.040
  2. Kalinina MA, Skvortsov DA, Rubtsova MP, Komarova ES, Dontsova OA. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay. Molecular Imaging & Biology. 2018;20(3):368-377. doi:10.1007/s11307-017-1152-0
  3. Mezencev, Roman; Subramaniam, Ravi (October 2019). "The use of evidence from high-throughput screening and transcriptomic data in human health risk assessments". Toxicology and Applied Pharmacology. 380: 114706. doi:10.1016/j.taap.2019.114706. PMID   31400414.
  4. Hautier G. Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening. Computational Materials Science. 2019;163:108-116. doi:10.1016/j.commatsci.2019.02.040
  5. Yao, Yao; Wang, Tianqi; Liu, Yongjun; Zhang, Na (4 December 2019). "Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma". Artificial Cells, Nanomedicine, and Biotechnology. 47 (1): 1374–1383. doi: 10.1080/21691401.2019.1596943 . PMID   30977418.
  6. Maraviroc. AHFS Consumer Medication Information. September 2019:1.
  7. Taly, Valerie, Bernard T. Kelly, and Andrew D. Griffiths. "Droplets as microreactors for high‐throughput biology." ChemBioChem 8.3 (2007): 263-272.
  8. "How Many Genes Are There?". Human Genome Project Information. U.S. Department of Energy Office of Science. 2008-09-19.

Further reading