Hilbert's nineteenth problem

Last updated

Hilbert's nineteenth problem is one of the 23 Hilbert problems, set out in a list compiled by David Hilbert in 1900. [1] It asks whether the solutions of regular problems in the calculus of variations are always analytic. [2] Informally, and perhaps less directly, since Hilbert's concept of a "regular variational problem" identifies this precisely as a variational problem whose Euler–Lagrange equation is an elliptic partial differential equation with analytic coefficients, [3] Hilbert's nineteenth problem, despite its seemingly technical statement, simply asks whether, in this class of partial differential equations, any solution inherits the relatively simple and well understood property of being an analytic function from the equation it satisfies. Hilbert's nineteenth problem was solved independently in the late 1950s by Ennio De Giorgi and John Forbes Nash, Jr.

Contents

History

The origins of the problem

Eine der begrifflich merkwürdigsten Thatsachen in den Elementen der Theorie der analytischen Funktionen erblicke ich darin, daß es Partielle Differentialgleichungen giebt, deren Integrale sämtlich notwendig analytische Funktionen der unabhängigen Variabeln sind, die also, kurz gesagt, nur analytischer Lösungen fähig sind. [4]

David Hilbert, (Hilbert 1900, p. 288).

David Hilbert presented what is now called his nineteenth problem in his speech at the second International Congress of Mathematicians. [5] In ( Hilbert 1900 , p. 288) he states that, in his opinion, one of the most remarkable facts of the theory of analytic functions is that there exist classes of partial differential equations which admit only analytic functions as solutions, listing Laplace's equation, Liouville's equation, [6] the minimal surface equation and a class of linear partial differential equations studied by Émile Picard as examples. [7] He then notes that most partial differential equations sharing this property are Euler–Lagrange equations of a well defined kind of variational problem, satisfying the following three properties: [8]

(1)     ,
(2)     ,
(3)     F is an analytic function of all its arguments p, q, z, x and y.

Hilbert calls this a "regular variational problem". [9] Property (1) means that these are minimum problems. Property (2) is the ellipticity condition on the Euler–Lagrange equations associated to the given functional, while property (3) is a simple regularity assumption about the function F. [10] Having identified the class of problems considered, he poses the following question: "... does every Lagrangian partial differential equation of a regular variation problem have the property of admitting analytic integrals exclusively?" [11] He asks further if this is the case even when the function is required to assume boundary values that are continuous, but not analytic, as happens for Dirichlet's problem for the potential function . [8]

The path to the complete solution

Hilbert stated his nineteenth problem as a regularity problem for a class of elliptic partial differential equation with analytic coefficients. [8] Therefore the first efforts of researchers who sought to solve it were aimed at studying the regularity of classical solutions for equations belonging to this class. For C 3  solutions, Hilbert's problem was answered positively by SergeiBernstein  ( 1904 ) in his thesis. He showed that C 3  solutions of nonlinear elliptic analytic equations in 2 variables are analytic. Bernstein's result was improved over the years by several authors, such as Petrowsky (1939), who reduced the differentiability requirements on the solution needed to prove that it is analytic. On the other hand, direct methods in the calculus of variations showed the existence of solutions with very weak differentiability properties. For many years there was a gap between these results. The solutions that could be constructed were known to have square integrable second derivatives, but this was not quite strong enough to feed into the machinery that could prove they were analytic, which needed continuity of first derivatives. This gap was filled independently by EnnioDe Giorgi  ( 1956 , 1957 ), and John ForbesNash  ( 1957 , 1958 ), who were able to show the solutions had first derivatives that were Hölder continuous. By previous results this implied that the solutions are analytic whenever the differential equation has analytic coefficients, thus completing the solution of Hilbert's nineteenth problem. Subsequently, Jürgen Moser gave an alternate proof of the results obtained by EnnioDe Giorgi  ( 1956 , 1957 ), and John ForbesNash  ( 1957 , 1958 ).

Counterexamples to various generalizations of the problem

The affirmative answer to Hilbert's nineteenth problem given by Ennio De Giorgi and John Forbes Nash raised the question if the same conclusion holds also for EulerLagrange equations of more general functionals. At the end of the 1960s, Maz'ya (1968), [12] De Giorgi (1968) and Giusti & Miranda (1968) independently constructed several counterexamples, [13] showing that in general there is no hope of proving such regularity results without adding further hypotheses.

Precisely, Maz'ya (1968) gave several counterexamples involving a single elliptic equation of order greater than two with analytic coefficients. [14] For experts, the fact that such equations could have nonanalytic and even nonsmooth solutions created a sensation. [15]

De Giorgi (1968) and Giusti & Miranda (1968) gave counterexamples showing that in the case when the solution is vector-valued rather than scalar-valued, it need not be analytic; the example of De Giorgi consists of an elliptic system with bounded coefficients, while the one of Giusti and Miranda has analytic coefficients. [16] Later, Nečas (1977) provided other, more refined, examples for the vector valued problem. [17]

De Giorgi's theorem

The key theorem proved by De Giorgi is an a priori estimate stating that if u is a solution of a suitable linear second order strictly elliptic PDE of the form

and has square integrable first derivatives, then is Hölder continuous.

Application of De Giorgi's theorem to Hilbert's problem

Hilbert's problem asks whether the minimizers of an energy functional such as

are analytic. Here is a function on some compact set of Rn, is its gradient vector, and is the Lagrangian, a function of the derivatives of that satisfies certain growth, smoothness, and convexity conditions. The smoothness of can be shown using De Giorgi's theorem as follows. The Euler–Lagrange equation for this variational problem is the non-linear equation

and differentiating this with respect to gives

This means that satisfies the linear equation

with

so by De Giorgi's result the solution w has Hölder continuous first derivatives, provided the matrix is bounded. When this is not the case, a further step is needed: one must prove that the solution is Lipschitz continuous, i.e. the gradient is an function.

Once w is known to have Hölder continuous (n+1)st derivatives for some n ≥ 1, then the coefficients aij have Hölder continuous nth derivatives, so a theorem of Schauder implies that the (n+2)nd derivatives are also Hölder continuous, so repeating this infinitely often shows that the solution w is smooth.

Nash's theorem

Nash gave a continuity estimate for solutions of the parabolic equation

where u is a bounded function of x1,...,xn, t defined for t ≥ 0. From his estimate Nash was able to deduce a continuity estimate for solutions of the elliptic equation

by considering the special case when u does not depend on t.

Notes

  1. See ( Hilbert 1900 ) or, equivalently, one of its translations.
  2. "Sind die Lösungen regulärer Variationsprobleme stets notwendig analytisch?" (English translation by Mary Frances Winston Newson:-"Are the solutions of regular problems in the calculus of variations always necessarily analytic?"), formulating the problem with the same words of Hilbert (1900 , p. 288).
  3. See ( Hilbert 1900 , pp. 288–289), or the corresponding section on the nineteenth problem in any of its translations or reprints, or the subsection "The origins of the problem" in the historical section of this entry.
  4. English translation by Mary Frances Winston Newson:-"One of the most remarkable facts in the elements of the theory of analytic functions appears to me to be this: that there exist partial differential equations whose integrals are all of necessity analytic functions of the independent variables, that is, in short, equations susceptible of none but analytic solutions".
  5. For a detailed historical analysis, see the relevant entry "Hilbert's problems".
  6. Hilbert does not cite explicitly Joseph Liouville and considers the constant Gaussian curvature K as equal to -1/2: compare the relevant entry with ( Hilbert 1900 , p. 288).
  7. Unlike Liouville's work, Picard's work is explicitly cited by Hilbert (1900 , p. 288 and footnote 1 in the same page).
  8. 1 2 3 See ( Hilbert 1900 , p. 288).
  9. In his exact words: "Reguläres Variationsproblem". Hilbert's definition of a regular variational problem is stronger than the one currently used, for example, in ( Gilbarg & Trudinger 2001 , p. 289).
  10. Since Hilbert considers all derivatives in the "classical", i.e. not in the weak but in the strong, sense, even before the statement of its analyticity in (3) , the function F is assumed to be at least C 2 , as the use of the Hessian determinant in (2) implies.
  11. English translation by Mary Frances Winston Newson: Hilbert's (1900, p. 288) precise words are:-"... d. h. ob jede Lagrangesche partielle Differentialgleichung eines reguläres Variationsproblem die Eigenschaft at, daß sie nur analytische Integrale zuläßt" (Italics emphasis by Hilbert himself).
  12. See ( Giaquinta 1983 , p. 59), ( Giusti 1994 , p. 7 footnote 7 and p. 353), ( Gohberg 1999 , p. 1), ( Hedberg 1999 , pp. 10–11), ( Kristensen & Mingione 2011 , p. 5 and p. 8), and ( Mingione 2006 , p. 368).
  13. See ( Giaquinta 1983 , pp. 54–59), ( Giusti 1994 , p. 7 and pp. 353).
  14. See ( Hedberg 1999 , pp. 10–11), ( Kristensen & Mingione 2011 , p. 5 and p. 8) and ( Mingione 2006 , p. 368).
  15. According to ( Gohberg 1999 , p. 1).
  16. See ( Giaquinta 1983 , pp. 54–59) and ( Giusti 1994 , p. 7, pp. 202–203 and pp. 317–318).
  17. For more information about the work of Jindřich Nečas see the work of Kristensen & Mingione (2011 , §3.3, pp. 9–12) and ( Mingione 2006 , §3.3, pp. 369–370).

Related Research Articles

<span class="mw-page-title-main">John Forbes Nash Jr.</span> American mathematician and Nobel laureate (1928–2015)

John Forbes Nash, Jr., known and published as John Nash, was an American mathematician who made fundamental contributions to game theory, real algebraic geometry, differential geometry, and partial differential equations. Nash and fellow game theorists John Harsanyi and Reinhard Selten were awarded the 1994 Nobel Memorial Prize in Economics. In 2015, he and Louis Nirenberg were awarded the Abel Prize for their contributions to the field of partial differential equations.

The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.

In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region.

<span class="mw-page-title-main">Pierre-Louis Lions</span> French mathematician (born 1956)

Pierre-Louis Lions is a French mathematician. He is known for a number of contributions to the fields of partial differential equations and the calculus of variations. He was a recipient of the 1994 Fields Medal and the 1991 Prize of the Philip Morris tobacco and cigarette company.

In the mathematical field of partial differential equations, Harnack's principle or Harnack's theorem is a corollary of Harnack's inequality which deals with the convergence of sequences of harmonic functions.

<span class="mw-page-title-main">Ennio de Giorgi</span> Italian mathematician

Ennio De Giorgi was an Italian mathematician who worked on partial differential equations and the foundations of mathematics.

In mathematics, the convergence condition by Courant–Friedrichs–Lewy is a necessary condition for convergence while solving certain partial differential equations numerically. It arises in the numerical analysis of explicit time integration schemes, when these are used for the numerical solution. As a consequence, the time step must be less than a certain upper bound, given a fixed spatial increment, in many explicit time-marching computer simulations; otherwise, the simulation produces incorrect or unstable results. The condition is named after Richard Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper.

In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.

In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function u of two variables x,y is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of u and in the second-order partial derivatives of u. The independent variables (x,y) vary over a given domain D of R2. The term also applies to analogous equations with n independent variables. The most complete results so far have been obtained when the equation is elliptic.

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

In mathematics, specifically in differential geometry, isothermal coordinates on a Riemannian manifold are local coordinates where the metric is conformal to the Euclidean metric. This means that in isothermal coordinates, the Riemannian metric locally has the form

Vladimir Gilelevich Maz'ya is a Russian-born Swedish mathematician, hailed as "one of the most distinguished analysts of our time" and as "an outstanding mathematician of worldwide reputation", who strongly influenced the development of mathematical analysis and the theory of partial differential equations.

In differential geometry, Liouville's equation, named after Joseph Liouville, is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f2(dx2 + dy2) on a surface of constant Gaussian curvature K:

In mathematics, the Babuška–Lax–Milgram theorem is a generalization of the famous Lax–Milgram theorem, which gives conditions under which a bilinear form can be "inverted" to show the existence and uniqueness of a weak solution to a given boundary value problem. The result is named after the mathematicians Ivo Babuška, Peter Lax and Arthur Milgram.

In mathematics, and specifically the field of partial differential equations (PDEs), a parametrix is an approximation to a fundamental solution of a PDE, and is essentially an approximate inverse to a differential operator.

<span class="mw-page-title-main">Solomon Mikhlin</span> Soviet mathematician

Solomon Grigor'evich Mikhlin was a Soviet mathematician of who worked in the fields of linear elasticity, singular integrals and numerical analysis: he is best known for the introduction of the symbol of a singular integral operator, which eventually led to the foundation and development of the theory of pseudodifferential operators.

<span class="mw-page-title-main">Enrico Giusti</span> Italian mathematician

Enrico Giusti, is an Italian mathematician mainly known for his contributions to the fields of calculus of variations, regularity theory of partial differential equations, minimal surfaces and history of mathematics. He has been professor of mathematics at the Università di Firenze; he also taught and conducted research at the Australian National University at Canberra, at the Stanford University and at the University of California, Berkeley. After retirement, he devoted himself to the managing of the "Giardino di Archimede", a museum entirely dedicated to mathematics and its applications. Giusti is also the editor-in-chief of the international journal, dedicated to the history of mathematics "Bollettino di storia delle scienze matematiche".

Mariano Giaquinta, is an Italian mathematician mainly known for his contributions to the fields of calculus of variations and regularity theory of partial differential equation. He is currently professor of Mathematics at the Scuola Normale Superiore di Pisa and he is the director of De Giorgi center at Pisa.

References