Hilbert's thirteenth problem

Last updated

Hilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous) functions of two arguments. It was first presented in the context of nomography, and in particular "nomographic construction" — a process whereby a function of several variables is constructed using functions of two variables. The variant for continuous functions was resolved affirmatively in 1957 by Vladimir Arnold when he proved the Kolmogorov–Arnold representation theorem, but the variant for algebraic functions remains unresolved.

Contents

Introduction

Using the methods pioneered by Ehrenfried Walther von Tschirnhaus (1683), Erland Samuel Bring (1786), and George Jerrard (1834), William Rowan Hamilton showed in 1836 that every seventh-degree equation can be reduced via radicals to the form .

Regarding this equation, Hilbert asked whether its solution, x, considered as a function of the three variables a, b and c, can be expressed as the composition of a finite number of two-variable functions.

History

Hilbert originally posed his problem for algebraic functions (Hilbert 1927, "...Existenz von algebraischen Funktionen...", i.e., "...existence of algebraic functions..."; also see Abhyankar 1997, Vitushkin 2004). However, Hilbert also asked in a later version of this problem whether there is a solution in the class of continuous functions.

A generalization of the second ("continuous") variant of the problem is the following question: can every continuous function of three variables be expressed as a composition of finitely many continuous functions of two variables? The affirmative answer to this general question was given in 1957 by Vladimir Arnold, then only nineteen years old and a student of Andrey Kolmogorov. Kolmogorov had shown in the previous year that any function of several variables can be constructed with a finite number of three-variable functions. Arnold then expanded on this work to show that only two-variable functions were in fact required, thus answering Hilbert's question when posed for the class of continuous functions.

Arnold later returned to the algebraic version of the problem, jointly with Goro Shimura (Arnold and Shimura 1976).

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

<span class="mw-page-title-main">Discrete mathematics</span> Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that can be considered "discrete" rather than "continuous". Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics".

<span class="mw-page-title-main">Vladimir Arnold</span> Russian mathematician (1937–2010)

Vladimir Igorevich Arnold was a Soviet and Russian mathematician. He is known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to several areas, including geometrical theory of dynamical systems theory, algebra, catastrophe theory, topology, algebraic geometry, symplectic geometry, symplectic topology, differential equations, classical mechanics, differential geometric approach to hydrodynamics, geometric analysis and singularity theory, including posing the ADE classification problem.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

<span class="mw-page-title-main">Hilbert's problems</span> 23 mathematical problems stated in 1900

Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society. Earlier publications appeared in Archiv der Mathematik und Physik.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

Hilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics.

In mathematics, an expression is in closed form if it is formed with constants, variables and a finite set of basic functions connected by arithmetic operations and function composition. Commonly, the allowed functions are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context.

In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.

The twenty-first problem of the 23 Hilbert problems, from the celebrated list put forth in 1900 by David Hilbert, concerns the existence of a certain class of linear differential equations with specified singular points and monodromic group.

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

Hilbert's nineteenth problem is one of the 23 Hilbert problems, set out in a list compiled by David Hilbert in 1900. It asks whether the solutions of regular problems in the calculus of variations are always analytic. Informally, and perhaps less directly, since Hilbert's concept of a "regular variational problem" identifies this precisely as a variational problem whose Euler–Lagrange equation is an elliptic partial differential equation with analytic coefficients, Hilbert's nineteenth problem, despite its seemingly technical statement, simply asks whether, in this class of partial differential equations, any solution inherits the relatively simple and well understood property of being an analytic function from the equation it satisfies. Hilbert's nineteenth problem was solved independently in the late 1950s by Ennio De Giorgi and John Forbes Nash, Jr.

In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are not algebraic varieties but are families of algebraic varieties. Shimura curves are the one-dimensional Shimura varieties. Hilbert modular surfaces and Siegel modular varieties are among the best known classes of Shimura varieties.

In mathematics, the term Riemann–Hilbert correspondence refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in Hilbert's twenty-first problem was for the Riemann sphere, where it was about the existence of systems of linear regular differential equations with prescribed monodromy representations. First the Riemann sphere may be replaced by an arbitrary Riemann surface and then, in higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. There is a correspondence between certain systems of partial differential equations and possible monodromies of their solutions.

Anatoli Georgievich Vitushkin was a Soviet mathematician noted for his work on analytic capacity and other parts of mathematical analysis.

<span class="mw-page-title-main">Septic equation</span> Polynomial equation of degree 7

In algebra, a septic equation is an equation of the form

<span class="mw-page-title-main">Alexander Varchenko</span>

Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.

In real analysis and approximation theory, the Kolmogorov–Arnold representation theorem states that every multivariate continuous function can be represented as a superposition of the two-argument addition of continuous functions of one variable. It solved a more constrained form of Hilbert's thirteenth problem, so the original Hilbert's thirteenth problem is a corollary.

References

See also