Hirnantian Isotopic Carbon Excursion

Last updated

The Hirnantian Isotopic Carbon Excursion (HICE) is a positive carbon isotope excursion which took place at the end of the Ordovician period, during the Hirnantian Age from around 445.2 Ma to 443.8 Ma (million years ago). The HICE is connected to a large scale, but short glaciation, [1] [2] as well as the End Ordovician mass extinction, which wiped out 85% of marine life. [3] [4] [5] The exact cause of the HICE is still debated, however it is a key event for defining the Ordovician-Silurian boundary.

Contents

Timing and stratigraphy

The HICE is widely recognized as short in terms of geologic time, but just how short is still debated. The current official timing of the Hirnantian, and thus the HICE, in the geologic record according to the International Commission on Stratigraphy is 445.2 (±1.3) Ma to 443.8 (± 1.5). [6] Another proposed date for the HICE is 443.14 (± 0.24) Ma to 442.67 Ma (± 0.34). [2] Major uncertainty over the age is partly due to the short time frame of both the HICE and Hirnantian age and comparatively large statistical error on these dates.

Complete sections of Hirnantian age rocks outcrop primarily across the Northern Hemisphere, with notable sections in China, [3] Scotland, [7] Canada, [5] [8] the United States, [9] Norway, [10] and Latvia, [11] summarized in Table 1. Due to erosion from the associated glaciation, the thickness of these sections are small, often not larger than several meters to tens to meters in thickness. [10] Most preserved rocks are shallow water deposits, but some notable deeper water deposits exist in China. [3] These formations mostly show a regular trend of initial deep sea rocks like shale and mudstones, then deposition of shallow limestone's during the Hirnantian. These then returned to deep shales and muds as water rose again at the end of the Hirnantian due to de-glaciation. Rocks which stayed in deep water environments during the HICE continued to deposit mudstones or shale. Most sections analyzed for carbon 13 isotope ratio’s (δ13C) show a positive shift of +3-6%, [10] [5] [7] [8] [9] [12] although some sections show values as high as +7% or as low as +2%. [12] [9] [11]

Table 1:
CountryLocation and FormationHICE Thicknessδ13C Range (At Peak)
CanadaAnticosti Island (Ellis Bay Formation)~7.5m3-4%
Cornwallis Island (Cape Phillips Embayment)10-15m3-6%
ChinaWangjiawan (Upper Wufeng, Kuanyinchiao Formations)1.2m2-3%
Nanbazi (Upper Wufeng, Kuanyinchiao Formations)~7m3-4%
EstoniaCentral Estonia (Ärina Formation)3-6m2-6%
LatviaWest to Northern Latvia (Kuldiga and Saldus Formations)14-21m3-6%
NorwayOslofjord (Langøyene, Langara,

Upper Husbergøya, and Lower Solvik Formations)

13-51m3-6%
ScotlandDob's Linn (Upper Hartfell, Lower Birkhill Formations)~3.5m3%
United States of AmericaVinini Creek (Vinini Formation)10m2-3%
Monitor Range (Hanson Creek Formation)~40m4-6%

Causes

The exact cause of the HICE is still debated, although there are 2 main hypotheses. One hypothesis states that it was primarily due to enhanced burial of carbon. [1] [3] [13] High water levels and enhanced weathering in the earlier Katian Age created more space and nutrients for marine eukaryotes, which grew larger and thus sank to the ocean floor more readily, burying more organic carbon in the sediments. [1] The other hypothesis states that a cooling trend through the Katian created glacial conditions, and the retreating glaciers exposed large numbers of near-shore marine carbonates to weathering. [5] [8] The weathering of these carbonates pumped more carbon back into the ocean, raising the buried δ13C.

Many of the deeper water sections show lower increases in δ13C than the shallow water sections. It's been proposed that the deep water rocks represent the true signal of the HICE, while the shallow water rocks show a higher value due to alteration. [12]

Debates and comparisons

Aside from the cause and age, other parts of the HICE are also still debated. For example, some studies have shown that there may have been multiple cycles of sea level rise and fall within this time period. [10] [5] Disagreement also exists over the exact timing of the HICE. [2] Biostratigraphy is often used to aid in identifying the Hirnantian, and thus the HICE, where the Hirnantian is defined as encompassing the N. extraordinarius biozone and the N. presculptus biozone. [14] [15] [16] When some or entire sections of these fossils are missing, it can complicate reconstruction and correlation of sections. Some localities are interpreted to show the peak of the HICE at the start of the Hirnantian, [8] while others are interpreted to not reach their peak until later into the age. [10] [5] [7] This, along with the small section thicknesses, can make it difficult to correlate sections worldwide with one another.

The HICE is far shorter and smaller in magnitude than other isotopic excursions from the earlier Precambrian, but is of a comparable to lower magnitude compared to other positive carbon isotope excursions in the Phanerozoic. [17] [18] The closest comparable excursion to the HICE is the Steptoean positive carbon isotope excursion (SPICE), a positive excursion of up to +5% δ13C which lasted for 2-4 million years and occurred around 295 Ma ago. [19] [20] Both excursions have similar proposed causes, including enhanced burial of carbon and weathering of carbonates. The two excursions are also of a similar time frame, lasting in the single digit millions of years. [19] [20]

Related Research Articles

<span class="mw-page-title-main">Cambrian</span> First period of the Paleozoic Era, 539–485 million years ago

The Cambrian is the first geological period of the Paleozoic Era, and the Phanerozoic Eon. The Cambrian lasted 53.4 million years from the end of the preceding Ediacaran period 538.8 Ma to the beginning of the Ordovician Period 485.4 Ma.

<span class="mw-page-title-main">Ediacaran</span> Third and last period of the Neoproterozoic Era

The Ediacaran is a geological period of the Neoproterozoic era that spans 96 million years from the end of the Cryogenian period at 635 Mya to the beginning of the Cambrian period at 538.8 Mya. It is the last period of the Proterozoic eon as well as the last of the so-called "Precambrian supereon", before the beginning of the subsequent Cambrian period marks the start of the Phanerozoic eon, where recognizable fossil evidence of life becomes common.

<span class="mw-page-title-main">Ordovician</span> Second period of the Paleozoic Era 485–444 million years ago

The Ordovician is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 Ma to the start of the Silurian Period 443.8 Ma.

The PaleozoicEra is the first of three geological eras of the Phanerozoic Eon. Beginning 538.8 million years ago (Ma), it succeeds the Neoproterozoic and ends 251.9 Ma at the start of the Mesozoic Era. The Paleozoic is subdivided into six geologic periods :

<span class="mw-page-title-main">Silurian</span> Third period of the Paleozoic Era, 443–419 million years ago

The Silurian is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the shortest period of the Paleozoic Era. As with other geologic periods, the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out.

<span class="mw-page-title-main">Snowball Earth</span> Worldwide glaciation episodes during the Proterozoic eon

The Snowball Earth is a geohistorical hypothesis that proposes during one or more of Earth's icehouse climates, the planet's surface became entirely or nearly entirely frozen with no liquid oceanic or surface water exposed to the atmosphere. The most academically referred period of such global glaciation is believed to have occurred sometime before 650 mya during the Cryogenian period.

<span class="mw-page-title-main">Late Ordovician mass extinction</span> Extinction event around 444 million years ago

The Late Ordovician mass extinction (LOME), sometimes known as the end-Ordovician mass extinction or the Ordovician-Silurian extinction, is the first of the "big five" major mass extinction events in Earth's history, occurring roughly 445 million years ago (Ma). It is often considered to be the second-largest known extinction event just behind the end-Permian mass extinction, in terms of the percentage of genera that became extinct. Extinction was global during this interval, eliminating 49–60% of marine genera and nearly 85% of marine species. Under most tabulations, only the Permian-Triassic mass extinction exceeds the Late Ordovician mass extinction in biodiversity loss. The extinction event abruptly affected all major taxonomic groups and caused the disappearance of one third of all brachiopod and bryozoan families, as well as numerous groups of conodonts, trilobites, echinoderms, corals, bivalves, and graptolites. Despite its taxonomic severity, the Late Ordovician mass extinction did not produce major changes to ecosystem structures compared to other mass extinctions, nor did it lead to any particular morphological innovations. Diversity gradually recovered to pre-extinction levels over the first 5 million years of the Silurian period.

The Guadalupian is the second and middle series/epoch of the Permian. The Guadalupian was preceded by the Cisuralian and followed by the Lopingian. It is named after the Guadalupe Mountains of New Mexico and Texas, and dates between 272.95 ± 0.5 – 259.1 ± 0.4 Mya. The series saw the rise of the therapsids, a minor extinction event called Olson's Extinction and a significant mass extinction called the end-Capitanian extinction event. The Guadalupian was previously known as the Middle Permian.

The Andean-Saharan glaciation, also known as the Early Paleozoic Ice Age (EPIA), the Early Paleozoic Icehouse, the Late Ordovician glaciation, the end-Ordovician glaciation, or the Hirnantian glaciation, occurred during the Paleozoic from approximately 460 Ma to around 420 Ma, during the Late Ordovician and the Silurian period. The major glaciation during this period was formerly thought only to consist of the Hirnantian glaciation itself but has now been recognized as a longer, more gradual event, which began as early as the Darriwilian, and possibly even the Floian. Evidence of this glaciation can be seen in places such as Arabia, North Africa, South Africa, Brazil, Peru, Bolivia, Chile, Argentina, and Wyoming. More evidence derived from isotopic data is that during the Late Ordovician, tropical ocean temperatures were about 5 °C cooler than present day; this would have been a major factor that aided in the glaciation process.

In the geologic timescale, the Capitanian is an age or stage of the Permian. It is also the uppermost or latest of three subdivisions of the Guadalupian Epoch or Series. The Capitanian lasted between 264.28 and 259.51 million years ago. It was preceded by the Wordian and followed by the Wuchiapingian.

In the geological timescale, the Llandovery Epoch occurred at the beginning of the Silurian Period. The Llandoverian Epoch follows the massive Ordovician-Silurian extinction events, which led to a large decrease in biodiversity and an opening up of ecosystems.

Cap carbonates are layers of distinctively textured carbonate rocks that occur at the uppermost layer of sedimentary sequences reflecting major glaciations in the geological record.

The Lau event was the last of three relatively minor mass extinctions during the Silurian period. It had a major effect on the conodont fauna, but barely scathed the graptolites, though they suffered an extinction very shortly thereafter termed the Kozlowskii event that some authors have suggested was coeval with the Lau event and only appears asynchronous due to taphonomic reasons. It coincided with a global low point in sea level caused by glacioeustasy and is closely followed by an excursion in geochemical isotopes in the ensuing late Ludfordian faunal stage and a change in depositional regime.

<i>δ</i><sup>13</sup>C Measure of relative carbon-13 concentration in a sample

In geochemistry, paleoclimatology, and paleoceanography δ13C is an isotopic signature, a measure of the ratio of the two stable isotopes of carbon—13C and 12C—reported in parts per thousand. The measure is also widely used in archaeology for the reconstruction of past diets, particularly to see if marine foods or certain types of plants were consumed.

The Mulde event was an anoxic event, and marked the second of three1 relatively minor mass extinctions during the Silurian period. It coincided with a global drop in sea level, and is closely followed by an excursion in geochemical isotopes. Its onset is synchronous with the deposition of the Fröjel Formation in Gotland. Perceived extinction in the conodont fauna, however, likely represent a change in the depositional environment of sedimentary sequences rather than a genuine biological extinction.

The Cenomanian-Turonian boundary event, also known as the Cenomanian-Turonian extinction, Cenomanian-Turonian Oceanic Anoxic Event, and referred to also as the Bonarelli Event or Level, was an anoxic extinction event in the Cretaceous period. The Cenomanian-Turonian oceanic anoxic event is considered to be the most recent truly global oceanic anoxic event in Earth's geologic history. There was a large carbon cycle disturbance during this time period, signified by a large positive carbon isotope excursion. However, apart from the carbon cycle disturbance, there were also large disturbances in the ocean's nitrogen, oxygen, phosphorus, sulphur, and iron cycles.

The Carnian pluvial episode (CPE), often called the Carnian pluvial event, was an interval of major change in global climate that was synchronous with significant changes in Earth's biota both in the sea and on land. It occurred during the latter part of the Carnian Stage, a subdivision of the late Triassic period, and lasted for perhaps 1–2 million years.

The Paquier Event (OAE1b) was an oceanic anoxic event (OAE) that occurred around 111 million years ago (Ma), in the Albian geologic stage, during a climatic interval of Earth's history known as the Middle Cretaceous Hothouse (MKH).

The Lomagundi-Jatuli Carbon Isotope Excursion or Lomagundi-Jatuli Event (LJE) was a carbon isotope excursion that occurred in the Paleoproterozoic between 2.3-2.1 Ga, possessing the largest magnitude and longest duration of positive δ13C values found in marine carbonate rocks. The δ13C values range from +5 to + 30‰. Carbon isotope compositions in marine carbonates typically fluctuate around zero per mil (‰) through time. To coincide with the LJE global δ13Ccarb levels, the amount of buried organic carbon would have needed to double or triple, and over millions of years.

The Steptoean positive carbon isotope excursion (SPICE) is a global chemostratigraphic event which occurred during the upper Cambrian period betwee 497 and 494 million years ago. This event corresponds with the ICS Guzhangian- Paibian Stage boundary and the Marjuman- Steptoean stage boundary in North America. The general signature of the SPICE event is a positive δ13C excursion, characterized by a 4 to 6 ‰ shift in δ13C values within carbonate successions around the world. SPICE was first described in 1993, and then named later in 1998. In both these studies, the SPICE excursion was identified and trends were observed within Cambrian formations of the Great Basin of the western United States.

References

  1. 1 2 3 Shen, Jiaheng; Pearson, Ann; Henkes, Gregory A.; Zhang, Yi Ge; Chen, Kefan; Li, Dandan; Wankel, Scott D.; Finney, Stanley C.; Shen, Yanan (July 2018). "Improved efficiency of the biological pump as a trigger for the Late Ordovician glaciation". Nature Geoscience. 11 (7): 510–514. Bibcode:2018NatGe..11..510S. doi:10.1038/s41561-018-0141-5. ISSN   1752-0908.
  2. 1 2 3 Ling, Ming-Xing; Zhan, Ren-Bin; Wang, Guang-Xu; Wang, Yi; Amelin, Yuri; Tang, Peng; Liu, Jian-Bo; Jin, Jisuo; Huang, Bing; Wu, Rong-Chang; Xue, Shuo; Fu, Bin; Bennett, Vickie C.; Wei, Xin; Luan, Xiao-Cong (December 2019). "An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation". Solid Earth Sciences. 4 (4): 190–198. Bibcode:2019SolES...4..190L. doi:10.1016/j.sesci.2019.11.001.
  3. 1 2 3 4 Zhou, Lian; Algeo, Thomas J.; Shen, Jun; Hu, ZhiFang; Gong, Hongmei; Xie, Shucheng; Huang, JunHua; Gao, Shan (2015-02-15). "Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation". Palaeogeography, Palaeoclimatology, Palaeoecology. 420: 223–234. Bibcode:2015PPP...420..223Z. doi:10.1016/j.palaeo.2014.12.012. ISSN   0031-0182.
  4. Delabroye, A.; Vecoli, M. (2010-02-01). "The end-Ordovician glaciation and the Hirnantian Stage: A global review and questions about Late Ordovician event stratigraphy". Earth-Science Reviews. 98 (3): 269–282. Bibcode:2010ESRv...98..269D. doi:10.1016/j.earscirev.2009.10.010. ISSN   0012-8252.
  5. 1 2 3 4 5 6 Jones, David; Fike, David; Finnegan, Seth; Fischer, Woodward; Schrag, Daniel; McCay, Dwight (2011). "Terminal Ordovician carbon isotope stratigraphy and glacioeustatic sea-level change across Anticosti Island (Québec, Canada)" (PDF). Geological Society of America Bulletin. 123 (7/8): 1645–1664. Bibcode:2011GSAB..123.1645J. doi:10.1130/B30323.1.
  6. "International Commission on Stratigraphy". stratigraphy.org. Retrieved 2024-02-26.
  7. 1 2 3 Underwood, C. J.; Crowley, S. F.; Marshall, J. D.; Brenchley, P. J. (July 1997). "High-Resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob's Linn, Scotland) and its global correlation". Journal of the Geological Society. 154 (4): 709–718. Bibcode:1997JGSoc.154..709U. doi:10.1144/gsjgs.154.4.0709. ISSN   0016-7649.
  8. 1 2 3 4 Melchin, Michael J.; Holmden, Chris (2006-05-18). "Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation". Palaeogeography, Palaeoclimatology, Palaeoecology. 234 (2): 186–200. Bibcode:2006PPP...234..186M. doi:10.1016/j.palaeo.2005.10.009. ISSN   0031-0182.
  9. 1 2 3 Finney, Stanley C.; Berry, William B. N.; Cooper, John D.; Ripperdan, Robert L.; Sweet, Walter C.; Jacobson, Stephen R.; Soufiane, Azzedine; Achab, Aicha; Noble, Paula J. (1999-03-01). "Late Ordovician mass extinction: A new perspective from stratigraphic sections in central Nevada". Geology. 27 (3): 215. Bibcode:1999Geo....27..215F. doi:10.1130/0091-7613(1999)027<0215:LOMEAN>2.3.CO;2.
  10. 1 2 3 4 5 Calner, Mikael; Bockelie, Johan Fredrik; Rasmussen, Christian M. Ø; Calner, Hanna; Lehnert, Oliver; Joachimski, Michael M. (November 2021). "Carbon isotope chemostratigraphy and sea-level history of the Hirnantian Stage (uppermost Ordovician) in the Oslo–Asker district, Norway". Geological Magazine. 158 (11): 1977–2008. Bibcode:2021GeoM..158.1977C. doi:10.1017/S0016756821000546. ISSN   0016-7568.
  11. 1 2 Brenchley, P.J; Carden, G.A; Hints, L; Kalijo, D; Marshall, J.D; Martma, T; Meidla, T; Nõlvak, J (2003). "High-resolution stable isotope stratigraphy of Upper Ordovician sequences: Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation". GSA Bulletin. 115 (1): 89–105. Bibcode:2003GSAB..115...89B. doi:10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2.
  12. 1 2 3 Jones, David; Brothers, Roger; Ahm, Anne-Sofie; Slater, Nicholas; Higgins, John; Fike, David (2019). "Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates". 48(2). Geology. p. 194-199.
  13. Marshall, James; Middleton, Paul (1990). "Changes in marine isotopic composition and the late Ordovician glaciation". Journal of the Geological Society. 147 (1): 1–4. Bibcode:1990JGSoc.147....1M. doi:10.1144/gsjgs.147.1.0001.
  14. Maletz, Jörg; Wang, Chuanshang; Kai, Wei; Wang, Xiaofeng (2021-09-01). "Upper Ordovician (Hirnantian) to Lower Silurian (Telychian, Llandovery) graptolite biostratigraphy of the Tielugou section, Shennongjia anticline, Hubei Province, China". PalZ. 95 (3): 453–481. Bibcode:2021PalZ...95..453M. doi:10.1007/s12542-020-00544-5. ISSN   1867-6812.
  15. Xu, Chen; Sheets, David H; Melchin, Michael J.; Mitchell, Charles E (2005). "Patterns and Processes of Latest Ordovician Graptolite Extinction and Recovery Based on Data from South China". Journal of Paleontology. 79 (5): 842–861. doi:10.1666/0022-3360(2005)079[0842:PAPOLO]2.0.CO;2 via ResearchGate.
  16. Cooper, R.A; Sadler, P.M (2012). "Chapter 20: The Ordovician Period". In Gradstein, Felix; Ogg, J.G; Schmitz, Mark D.; Ogg, Gabi M. (eds.). The Geologic Time Scale 2012. Elsevier. pp. 489–507. Bibcode:2012gts..book.....G.
  17. Saltzman, M.R; Thomas, E (2012). "Chapter 11 - Carbon Isotope Stratigraphy". In Gradstein, Felix.M; Ogg, James G.; Schmitz, Mark D.; Ogg, Gabi M. (eds.). The Geologic Time Scale. Elsevier. pp. 207–232.
  18. Shields, Graham A.; Mills, Benjamin J. W.; Zhu, Maoyan; Raub, Timothy D.; Daines, Stuart J.; Lenton, Timothy M. (October 2019). "Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial". Nature Geoscience. 12 (10): 823–827. Bibcode:2019NatGe..12..823S. doi:10.1038/s41561-019-0434-3. ISSN   1752-0908.
  19. 1 2 Saltzman, Matthew R.; Ripperdan, Robert L.; Brasier, M. D.; Lohmann, Kyger C.; Robison, Richard A.; Chang, W. T.; Peng, Shanchi; Ergaliev, E. K.; Runnegar, Bruce (2000-10-01). "A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level". Palaeogeography, Palaeoclimatology, Palaeoecology. 162 (3): 211–223. Bibcode:2000PPP...162..211S. doi:10.1016/S0031-0182(00)00128-0. ISSN   0031-0182.
  20. 1 2 Navidi-Izad, Navid; Hashemi, Hossein; Saltzman, Matthew R. (2024-02-01). "The upper Cambrian SPICE carbon isotope excursion from the Alborz Ranges, northeastern Iran". Marine and Petroleum Geology. 160: 106635. Bibcode:2024MarPG.16006635N. doi:10.1016/j.marpetgeo.2023.106635. ISSN   0264-8172.