Histone fold

Last updated

Histone fold
Identifiers
SymbolHistone
Pfam clan CL0012
ECOD 148.1.1
InterPro IPR009072
SCOP2 47112 / SCOPe / SUPFAM
CDD cl45933

The histone fold is a structural motif located near the C-terminus of histone proteins, characterized by three alpha helices separated by two loops. This motif facilitates the formation of heterodimers, which subsequently assemble into a histone octamer, playing a crucial role in the packaging of DNA into nucleosomes within chromatin. [1] This fold is an ancient and highly conserved structural motif, essential for DNA compaction and regulation across a wide range of species.

Contents

Discovery

The histone fold motif was first discovered in TATA box-binding protein-associated factors, which play a key role in transcription. [1]

Structure

The histone fold is typically around 70 amino acids long and is characterized by three alpha helices connected by two short, unstructured loops. [2] In the absence of DNA, core histones assemble into head-to-tail intermediates. For instance, H3 and H4 first form heterodimers, which then combine to form a tetramer. Similarly, H2A and H2B form heterodimers. [3] These interactions occur through hydrophobic "handshake" interactions between histone fold domains. [4]

Histones H4 and H2A can form internucleosomal contacts that, when acetylated, enable ionic interactions between peptides. These interactions can alter the surrounding internucleosomal contacts, leading to chromatin opening and increased accessibility for transcription. [5]

Function

The histone fold plays a crucial role in nucleosome formation by mediating interactions between histones. The largest interface surfaces are found in the heterotypic dimer interactions of H3-H4 and H2A-H2B. These interactions are primarily mediated by the "handshake" motif between histone fold domains. Additionally, the H2A structure has a unique loop modification at its interface, contributing to its distinct role in transcriptional activation.[ citation needed ]

Evolution

The histone fold is thought to have evolved from ancestral peptide sets that formed helix-strand-helix motifs. These peptides are believed to have originated from ancient fragments, which may be precursors to the modern H3-H4 tetramer found in eukaryotes. Notably, archaeal single-chain histones, similar to eukaryotic histones, are found in the bacterium Aquifex aeolicus, suggesting a shared ancestry between eukaryotes and archaea, with possible lateral gene transfers to bacteria. [2]

Studies on species like Drosophila have revealed variations in the histone fold motif, particularly in the subunits of transcription initiation factors. These proteins contain histone-like structures, which show that the histone fold motif can also be found in non-histone proteins involved in protein-protein and protein-DNA interactions. [4]

Related Research Articles

<span class="mw-page-title-main">Histone</span> Protein family around which DNA winds to form nucleosomes

In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn are wrapped into 30-nanometer fibers that form tightly packed chromatin. Histones prevent DNA from becoming tangled and protect it from DNA damage. In addition, histones play important roles in gene regulation and DNA replication. Without histones, unwound DNA in chromosomes would be very long. For example, each human cell has about 1.8 meters of DNA if completely stretched out; however, when wound about histones, this length is reduced to about 90 micrometers (0.09 mm) of 30 nm diameter chromatin fibers.

<span class="mw-page-title-main">Nucleosome</span> Basic structural unit of DNA packaging in eukaryotes

A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamental subunit of chromatin. Each nucleosome is composed of a little less than two turns of DNA wrapped around a set of eight proteins called histones, which are known as a histone octamer. Each histone octamer is composed of two copies each of the histone proteins H2A, H2B, H3, and H4.

<span class="mw-page-title-main">Histone acetyltransferase</span> Enzymes that catalyze acyl group transfer from acetyl-CoA to histones

Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine. DNA is wrapped around histones, and, by transferring an acetyl group to the histones, genes can be turned on and off. In general, histone acetylation increases gene expression.

<span class="mw-page-title-main">Histone octamer</span> 8-protein complex forming the core of nucleosomes

In molecular biology, a histone octamer is the eight-protein complex found at the center of a nucleosome core particle. It consists of two copies of each of the four core histone proteins. The octamer assembles when a tetramer, containing two copies of H3 and two of H4, complexes with two H2A/H2B dimers. Each histone has both an N-terminal tail and a C-terminal histone-fold. Each of these key components interacts with DNA in its own way through a series of weak interactions, including hydrogen bonds and salt bridges. These interactions keep the DNA and the histone octamer loosely associated, and ultimately allow the two to re-position or to separate entirely.

<span class="mw-page-title-main">S phase</span> DNA replication phase of the cell cycle, between G1 and G2 phase

S phase (Synthesis phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved.

<span class="mw-page-title-main">Histone H4</span> One of the five main histone proteins involved in the structure of chromatin

Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H4 is involved with the structure of the nucleosome of the 'beads on a string' organization. Histone proteins are highly post-translationally modified. Covalently bonded modifications include acetylation and methylation of the N-terminal tails. These modifications may alter expression of genes located on DNA associated with its parent histone octamer. Histone H4 is an important protein in the structure and function of chromatin, where its sequence variants and variable modification states are thought to play a role in the dynamic and long term regulation of genes.

<span class="mw-page-title-main">Histone H2A</span> One of the five main histone proteins

Histone H2A is one of the five main histone proteins involved in the structure of chromatin in eukaryotic cells.

Histone H2B is one of the 5 main histone proteins involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and long N-terminal and C-terminal tails, H2B is involved with the structure of the nucleosomes.

Eukaryotic chromosome structure refers to the levels of packaging from raw DNA molecules to the chromosomal structures seen during metaphase in mitosis or meiosis. Chromosomes contain long strands of DNA containing genetic information. Compared to prokaryotic chromosomes, eukaryotic chromosomes are much larger in size and are linear chromosomes. Eukaryotic chromosomes are also stored in the cell nucleus, while chromosomes of prokaryotic cells are not stored in a nucleus. Eukaryotic chromosomes require a higher level of packaging to condense the DNA molecules into the cell nucleus because of the larger amount of DNA. This level of packaging includes the wrapping of DNA around proteins called histones in order to form condensed nucleosomes.

<span class="mw-page-title-main">Solenoid (DNA)</span>

The solenoid structure of chromatin is a model for the structure of the 30 nm fibre. It is a secondary chromatin structure which helps to package eukaryotic DNA into the nucleus.

<span class="mw-page-title-main">HIST2H2BE</span> Protein-coding gene in the species Homo sapiens

Histone H2B type 2-E is a protein that in humans is encoded by the HIST2H2BE gene.

<span class="mw-page-title-main">HIST3H2A</span> Protein-coding gene in the species Homo sapiens

Histone H2A type 3 is a protein that in humans is encoded by the HIST3H2A gene.

<span class="mw-page-title-main">HIST2H2AB</span> Protein-coding gene in the species Homo sapiens

Histone H2A type 2-B is a protein that in humans is encoded by the HIST2H2AB gene.

FACT is a heterodimeric protein complex that affects eukaryotic RNA polymerase II transcription elongation both in vitro and in vivo. It was discovered in 1998 as a factor purified from human cells that was essential for productive, in vitro Pol II transcription on a chromatinized DNA template.

<span class="mw-page-title-main">H2AFJ</span> Protein-coding gene in humans

Histone H2A.J is a protein that in humans is encoded by the H2AFJ gene.

<span class="mw-page-title-main">H2AFB1</span> Protein-coding gene in the species Homo sapiens

Histone H2A-Bbd type 1 also known as H2A Barr body-deficient is a histone protein variant that in humans is encoded by the H2AFB1 gene.

<span class="mw-page-title-main">H2AFB2</span> Protein-coding gene in the species Homo sapiens

Histone H2A-Bbd type 2/3 also known as H2A Barr body-deficient is a histone protein that in humans is encoded by the H2AFB2 gene.

<span class="mw-page-title-main">Nucleic acid quaternary structure</span>

Nucleic acidquaternary structure refers to the interactions between separate nucleic acid molecules, or between nucleic acid molecules and proteins. The concept is analogous to protein quaternary structure, but as the analogy is not perfect, the term is used to refer to a number of different concepts in nucleic acids and is less commonly encountered. Similarly other biomolecules such as proteins, nucleic acids have four levels of structural arrangement: primary, secondary, tertiary, and quaternary structure. Primary structure is the linear sequence of nucleotides, secondary structure involves small local folding motifs, and tertiary structure is the 3D folded shape of nucleic acid molecule. In general, quaternary structure refers to 3D interactions between multiple subunits. In the case of nucleic acids, quaternary structure refers to interactions between multiple nucleic acid molecules or between nucleic acids and proteins. Nucleic acid quaternary structure is important for understanding DNA, RNA, and gene expression because quaternary structure can impact function. For example, when DNA is packed into heterochromatin, therefore exhibiting a type of quaternary structure, gene transcription will be inhibited.

<span class="mw-page-title-main">H2AFB3</span> Protein-coding gene in the species Homo sapiens

H2A histone family, member B3 is a protein that in humans is encoded by the H2AFB3 gene.

Histone variants are proteins that substitute for the core canonical histones in nucleosomes in eukaryotes and often confer specific structural and functional features. The term might also include a set of linker histone (H1) variants, which lack a distinct canonical isoform. The differences between the core canonical histones and their variants can be summarized as follows: (1) canonical histones are replication-dependent and are expressed during the S-phase of cell cycle whereas histone variants are replication-independent and are expressed during the whole cell cycle; (2) in animals, the genes encoding canonical histones are typically clustered along the chromosome, are present in multiple copies and are among the most conserved proteins known, whereas histone variants are often single-copy genes and show high degree of variation among species; (3) canonical histone genes lack introns and use a stem loop structure at the 3’ end of their mRNA, whereas histone variant genes may have introns and their mRNA tail is usually polyadenylated. Complex multicellular organisms typically have a large number of histone variants providing a variety of different functions. Recent data are accumulating about the roles of diverse histone variants highlighting the functional links between variants and the delicate regulation of organism development.

References

  1. 1 2 Baxevanis AD, Landsman D (January 1997). "Histone and histone fold sequences and structures: a database". Nucleic Acids Research. 25 (1): 272–273. doi: 10.1093/nar/25.1.272 . PMC   146383 . PMID   9016552.
  2. 1 2 Alva V, Ammelburg M, Söding J, Lupas AN (March 2007). "On the origin of the histone fold". BMC Structural Biology. 7 (1): 17. doi: 10.1186/1472-6807-7-17 . PMC   1847821 . PMID   17391511.
  3. Watson JD, Baker TA, Bell SP, Gann A, Levine MK, Losick R (2008). Molecular Biology of the Gene. Pearson/Benjamin Cummings. ISBN   978-0-8053-9592-1.[ page needed ]
  4. 1 2 Arents G, Moudrianakis EN (November 1995). "The histone fold: a ubiquitous architectural motif utilized in DNA compaction and protein dimerization". Proceedings of the National Academy of Sciences of the United States of America. 92 (24): 11170–11174. Bibcode:1995PNAS...9211170A. doi: 10.1073/pnas.92.24.11170 . PMC   40593 . PMID   7479959.
  5. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D (October 2005). "Histone structure and nucleosome stability". Expert Review of Proteomics. 2 (5): 719–729. doi:10.1586/14789450.2.5.719. PMC   1831843 . PMID   16209651.