The history of X-ray computed tomography (CT) dates back to at least 1917 with the mathematical theory of the Radon transform. [1] [2] In the early 1900s an Italian radiologist named Alessandro Vallebona invented tomography (named "stratigrafia") which used radiographic film to see a single slice of the body. [3] [4] [5] [6] [7] [8] [9] [10] [11] It was not widely used until the 1930s, when Dr Bernard George Ziedses des Plantes developed a practical method for implementing the technique, known as focal plane tomography. [12] It relies on mechanical movement of the X-ray beam source and capture film in unison to ensure that the plane of interest remains in focus with objects falling outside of the plane being examined blurring out.
In October 1963, William H. Oldendorf received a U.S. patent for a "radiant energy apparatus for investigating selected areas of interior objects obscured by dense material". [13] The advent of sophisticated computers in the late 1960s and early 1970s made the development of the first practical computed tomography scanners possible. The first clinical CT scan was performed in a London hospital in 1971 using a scanner invented by Sir Godfrey Hounsfield. [14] The first commercial installation of a CT scanner, an EMI-Scanner Mark I took place at the Mayo Clinic in the U.S. in 1973.
The mathematical theory behind computed tomographic reconstruction dates back to 1917 with the invention of the Radon transform [1] [2] by Austrian mathematician Johann Radon, who showed mathematically that a function could be reconstructed from an infinite set of its projections. [15] In 1937, Polish mathematician Stefan Kaczmarz developed a method to find an approximate solution to a large system of linear algebraic equations. [16] [17] This, along with Allan McLeod Cormack's theoretical and experimental work, [18] [19] laid the foundation for the algebraic reconstruction technique, which was adapted by Godfrey Hounsfield as the image reconstruction mechanism in his first commercial CT scanner.[ citation needed ]
In 1956, Ronald N. Bracewell used a method similar to the Radon transform to reconstruct a map of solar radiation. [20] In 1959, UCLA neurologist William Oldendorf conceived an idea for "scanning a head through a transmitted beam of X-rays, and being able to reconstruct the radiodensity patterns of a plane through the head" after watching an automated apparatus built to reject frostbitten fruit by detecting dehydrated portions. In 1961, he built a prototype in which an X-ray source and a mechanically coupled detector rotated around the object to be imaged. By reconstructing the image, this instrument could get an X-ray picture of a nail surrounded by a circle of other nails, which made it impossible to X-ray from any single angle.[ clarification needed ] [21] In his landmark 1961 paper, he described the basic concept later used by Allan McLeod Cormack to develop the mathematics behind computerized tomography.
In October 1963, Oldendorf received a U.S. patent for a "radiant energy apparatus for investigating selected areas of interior objects obscured by dense material," for which he shared the 1975 Lasker Award with Hounsfield. [13] The field of the mathematical methods of computerized tomography continues to be an area of active development. [22] [23] [24] [25] An overview on the history of CT as well as the mathematical methods and their developments has been written by Frank Natterer and Erik Ritman. [26]
In 1968, Nirvana McFadden and Michael Saraswat established guidelines for diagnosis of a common abdominal pathologies, including acute appendicitis, small bowel obstruction, Ogilvie syndrome, acute pancreatitis, intussusception, and apple peel atresia. [27]
Conventional focal plane tomography remained a pillar of radiologic diagnostics until the late 1970s, when the availability of minicomputers and the development of transverse axial scanning led CT to gradually supplant as the preferred modality of obtaining tomographic images. In terms of mathematics, the method is based upon the use of the Radon Transform. But as Cormack remembered later, [28] he had to find the solution himself since it was only in 1972 that he learned of the work of Radon, by chance.
CT technology has vastly improved. Improvements in speed, slice count, and image quality have been the major focus primarily for cardiac imaging. Scanners now produce images much faster and with higher resolution enabling doctors to diagnose patients more accurately and perform medical procedures with greater precision.
The first commercially viable CT scanner was invented by Sir Godfrey Hounsfield in Hayes, United Kingdom, at EMI Central Research Laboratories using X-rays. Hounsfield conceived his idea in 1967. [14] The first EMI-Scanner was installed in Atkinson Morley Hospital in Wimbledon, England, and the first patient brain-scan was done on 1 October 1971. [29] It was publicly announced in 1972.
The original 1971 prototype took 160 parallel readings through 180 angles, each 1° apart, with each scan taking a little over 5 minutes. The images from these scans took 2.5 hours to be processed by algebraic reconstruction techniques on a large computer. The scanner employed a pencil X-ray beam aimed at a single photomultiplier detector, and operated on the Translate/Rotate principle. [29]
The first production X-ray CT machine (in fact called the "EMI-Scanner") was limited to making tomographic sections of the brain, but acquired the image data in about 4 minutes (scanning two adjacent slices), and the computation time (using a Data General Nova minicomputer) was about 7 minutes per picture. This scanner required the use of a water-filled Perspex tank with a pre-shaped rubber "head-cap" at the front, which enclosed the patient's head. The water-tank was used to reduce the dynamic range of the radiation reaching the detectors (between scanning outside the head compared with scanning through the bone of the skull). The images were relatively low resolution, being composed of a matrix of only 80 × 80 pixels.
In the U.S., the first installation was at the Mayo Clinic. As a tribute to the impact of this system on medical imaging the Mayo Clinic has an EMI scanner on display in the Radiology Department. Allan McLeod Cormack of Tufts University in Massachusetts independently invented a similar process, and both Hounsfield and Cormack shared the 1979 Nobel Prize in Medicine for their contributions to the development of CT. [30]
The first computed tomography (CT) system capable of producing images of any part of the human body without the need for a cumbersome "water tank" was the Automatic Computerized Transverse Axial (ACTA) scanner, designed by Dr. Robert S. Ledley, DDS, at Georgetown University. This revolutionary machine was equipped with 30 photomultiplier tubes as detectors and was capable of completing a scan in just nine translate/rotate cycles, significantly faster than the EMI-Scanner. To operate the servo-mechanisms and handle image acquisition and processing, the ACTA scanner used a DEC PDP11/34 minicomputer.
Georgetown University's prototype of the ACTA scanner caught the attention of the pharmaceutical giant Pfizer, which acquired the rights to manufacture it. Pfizer subsequently introduced their version of the machine, called the "200FS" (with "FS" denoting Fast Scan). The 200FS generated images in a 256×256 matrix, offering much better image definition compared to the EMI-Scanner's 80×80. It took approximately 20 seconds to acquire a single image slice, making full-body scans feasible, although patients still had to hold their breath during this process – a key distinction from the EMI scanner, which could not perform body scans due to its five-minute acquisition time for a single slice.
The workflow for the ACTA and 200FS machines involved the operator acquiring a series of slices and then processing the images. These images were printed onto films and the raw data were archived onto magnetic tape. This archival step was necessary because the computer lacked the storage capacity for more than one study at a time. In busy hospitals, CT operators found themselves constantly engaged in this labor-intensive process. Maintaining the machine's functionality was also a significant undertaking.
The DEC PDP11/34 computer played a pivotal role in the operation of the ACTA and 200FS scanners. It controlled the gantry, managed the scanning process, and processed raw data into the final images. Remarkably, this computer functioned with a mere 64 KB of memory and a 5 MB hard disk, which held both the operating program and the acquired raw data. The hard disk itself comprised two 12" platters, one of which was internal and fixed, while the other was housed in a removable round cartridge.
Portable CT scanners can be brought to the patient's bedside and do a scan without getting the patient out of bed. Some portable scanners are limited by their bore size and therefore mainly used for head scans. They do not have image viewing capabilities directly on the scanner. The portable CT scanner does not replace the fixed CT suite. An example of this type of machine is the Siemens Healthineers SOMATOM On.site.
In 2008 Siemens introduced a new generation of scanner that was able to take an image in less than 1 second, fast enough to produce clear images of beating hearts and coronary arteries.
CT may use continuous rotation of the gantry, and can acquire a data set in a few seconds with a spiral technique where the patient is moved in continuously while the machine basically acquires a single spiraling slice, so that all areas of interest are covered quickly. This data can be processed and displayed in any plane. This results in a big reduction in x-ray exposure. Siemens and Toshiba are the leaders in this technology.
In 2021, the FDA approved Siemens' photon-counting scanner. The scanner counts individual x-ray photons that pass through a patient and discriminates their energy, increasing the detail supplied to the reader. The technique also reduces the amount of x-rays needed for a scan. [31]
CT replaced the more invasive pneumoencephalography for imaging of the brain, as well as most applications of focal plane tomography.
Before computed tomography, tomographic images could be made by radiography using focal plane tomography, representing a single slice of the body on radiographic film. This method was proposed by the Italian radiologist Alessandro Vallebona in the early 1900s. The idea is based on simple principles of projective geometry: moving synchronously and in opposite directions the X-ray tube and the film, which are connected together by a rod whose pivot point is the focus; the image created by the points on the focal plane appears sharper, while the images of the other points annihilate as noise. [32] This is only marginally effective, as blurring occurs in only the "x" plane. This method of acquiring tomographic images using only mechanical techniques advanced through the mid-twentieth century, steadily producing sharper images, and with a greater ability to vary the thickness of the cross-section being examined. This was achieved through the introduction of more complex, multidirectional devices that can move in more than one plane and perform more effective blurring. However, despite the increasing sophistication of focal plane tomography, it remained ineffective at producing images of soft tissues. [32] With the increasing power and availability of computers in the 1960s, research began into practical computational techniques for creating tomographic images, leading to the development of computed tomography (CT).
A computed tomography scan is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers or radiology technologists.
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities. Although imaging of removed organs and tissues can be performed for medical reasons, such procedures are usually considered part of pathology instead of medical imaging.
Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram.
The Hounsfield scale, named after Sir Godfrey Hounsfield, is a quantitative scale for describing radiodensity. It is frequently used in CT scans, where its value is also termed CT number.
Sir Godfrey Newbold Hounsfield was a British electrical engineer who shared the 1979 Nobel Prize for Physiology or Medicine with Allan MacLeod Cormack for his part in developing the diagnostic technique of X-ray computed tomography (CT).
Technicare, formerly known as Ohio Nuclear, made CT, DR and MRI scanners and other medical imaging equipment. Its headquarters was in Solon, Ohio. Originally an independent company which became publicly traded, it was later purchased by Johnson & Johnson. At the time, Invacare was also owned by Technicare. A Harvard Business Case was written about the challenges that precipitated the transition. The company did not do well under Johnson & Johnson and in 1986, under economic pressure following unrelated losses from two Tylenol product tampering cases, J&J folded the company, selling the intellectual property and profitable service business to General Electric, a competitor.
Tomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner. Recent developments have seen the Radon transform and its inverse used for tasks related to realistic object insertion required for testing and evaluating computed tomography use in airport security.
Neuroimaging is the use of quantitative (computational) techniques to study the structure and function of the central nervous system, developed as an objective way of scientifically studying the healthy human brain in a non-invasive manner. Increasingly it is also being used for quantitative research studies of brain disease and psychiatric illness. Neuroimaging is highly multidisciplinary involving neuroscience, computer science, psychology and statistics, and is not a medical specialty. Neuroimaging is sometimes confused with neuroradiology.
Atkinson Morley Hospital (AMH) was located at Copse Hill near Wimbledon, south-west London, England from 1869 until 2003. Initially a convalescent hospital, it became one of the most advanced brain surgery centres in the world, and was involved in the development of the CT scanner. Following its closure, neuroscience services were relocated to the new Atkinson Morley Wing of St George's Hospital, Tooting.
Quantitative computed tomography (QCT) is a medical technique that measures bone mineral density (BMD) using a standard X-ray computed tomography (CT) scanner with a calibration standard to convert Hounsfield units (HU) of the CT image to bone mineral density values. Quantitative CT scans are primarily used to evaluate bone mineral density at the lumbar spine and hip.
Robert Steven Ledley, professor of physiology and biophysics and professor of radiology at Georgetown University School of Medicine, pioneered the use of electronic digital computers in biology and medicine. In 1959, he wrote two influential articles in Science: "Reasoning Foundations of Medical Diagnosis" and "Digital Electronic Computers in Biomedical Science". Both articles encouraged biomedical researchers and physicians to adopt computer technology.
William Henry Oldendorf was an American neurologist, physician, researcher, medical pioneer, founding member of the American Society for Neuroimaging (ASN), and originator of the technique of computed tomography.
A CT pulmonary angiogram (CTPA) is a medical diagnostic test that employs computed tomography (CT) angiography to obtain an image of the pulmonary arteries. Its main use is to diagnose pulmonary embolism (PE). It is a preferred choice of imaging in the diagnosis of PE due to its minimally invasive nature for the patient, whose only requirement for the scan is an intravenous line.
High-resolution computed tomography (HRCT) is a type of computed tomography (CT) with specific techniques to enhance image resolution. It is used in the diagnosis of various health problems, though most commonly for lung disease, by assessing the lung parenchyma. On the other hand, HRCT of the temporal bone is used to diagnose various middle ear diseases such as otitis media, cholesteatoma, and evaluations after ear operations.
A coronary CT calcium scan is a computed tomography (CT) scan of the heart for the assessment of severity of coronary artery disease. Specifically, it looks for calcium deposits in atherosclerotic plaques in the coronary arteries that can narrow arteries and increase the risk of heart attack. These plaques are the cause of most heart attacks, and become calcified as they develop.
Industrial computed tomography (CT) scanning is any computer-aided tomographic process, usually X-ray computed tomography, that uses irradiation to produce three-dimensional internal and external representations of a scanned object. Industrial CT scanning has been used in many areas of industry for internal inspection of components. Some of the key uses for industrial CT scanning have been flaw detection, failure analysis, metrology, assembly analysis and reverse engineering applications. Just as in medical imaging, industrial imaging includes both nontomographic radiography and computed tomographic radiography.
Cone beam computed tomography is a medical imaging technique consisting of X-ray computed tomography where the X-rays are divergent, forming a cone.
Coronary CT angiography is the use of computed tomography (CT) angiography to assess the coronary arteries of the heart. The patient receives an intravenous injection of radiocontrast and then the heart is scanned using a high speed CT scanner, allowing physicians to assess the extent of occlusion in the coronary arteries, usually in order to diagnose coronary artery disease.
In radiography, focal plane tomography is tomography by simultaneously moving the X-ray generator and X-ray detector so as to keep a consistent exposure of only the plane of interest during image acquisition. This was the main method of obtaining tomographs in medical imaging until the late-1970s. It has since been largely replaced by more advanced imaging techniques such as CT and MRI. It remains in use today in a few specialized applications, such as for acquiring orthopantomographs of the jaw in dental radiography.
X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.