Horndeski's theory

Last updated

Horndeski's theory is the most general theory of gravity in four dimensions whose Lagrangian is constructed out of the metric tensor and a scalar field and leads to second order equations of motion.[ clarification needed ] The theory was first proposed by Gregory Horndeski in 1974 [1] and has found numerous applications, particularly in the construction of cosmological models of Inflation and dark energy. [2] Horndeski's theory contains many theories of gravity, including General relativity, Brans-Dicke theory, Quintessence, Dilaton, Chameleon and covariant Galileon [3] as special cases.

Contents

Action

Horndeski's theory can be written in terms of an action as [4]

with the Lagrangian densities

Here is Newton's constant, represents the matter Lagrangian, to are generic functions of and , are the Ricci scalar and Einstein tensor, is the Jordan frame metric, semicolon indicates covariant derivatives, commas indicate partial derivatives, , and repeated indices are summed over following Einstein's convention.

Constraints on parameters

Many of the free parameters of the theory have been constrained, from the coupling of the scalar field to the top field and via coupling to jets down to low coupling values with proton collisions at the ATLAS experiment. [5] and , are strongly constrained by the direct measurement of the speed of gravitational waves following GW170817. [6] [7] [8] [9] [10] [11]

See also

Related Research Articles

<span class="mw-page-title-main">Kaluza–Klein theory</span> Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. In their setup, the vacuum has the usual 3 dimensions of space and one dimension of time but with another microscopic extra spatial dimension in the shape of a tiny circle. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

In particle physics, the hypothetical dilaton particle is a particle of a scalar field that appears in theories with extra dimensions when the volume of the compactified dimensions varies. It appears as a radion in Kaluza–Klein theory's compactifications of extra dimensions. In Brans–Dicke theory of gravity, Newton's constant is not presumed to be constant but instead 1/G is replaced by a scalar field and the associated particle is the dilaton.

In physics, the Brans–Dicke theory of gravitation is a competitor to Einstein's general theory of relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant is not presumed to be constant but instead is replaced by a scalar field which can vary from place to place and with time.

Semiclassical gravity is an approximation to the theory of quantum gravity in which one treats matter and energy fields as being quantum and the gravitational field as being classical.

String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.

In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.

Tensor–vector–scalar gravity (TeVeS), developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

The Lagrangian in scalar-tensor theory can be expressed in the Jordan frame in which the scalar field or some function of it multiplies the Ricci scalar, or in the Einstein frame in which Ricci scalar is not multiplied by the scalar field. There exist various transformations between these frames. Despite the fact that these frames have been around for some time there has been debate about whether either, both, or neither frame is a 'physical' frame which can be compared to observations and experiment.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Bumblebee models are effective field theories describing a vector field with a vacuum expectation value that spontaneously breaks Lorentz symmetry. A bumblebee model is the simplest case of a theory with spontaneous Lorentz symmetry breaking.

<span class="mw-page-title-main">Asymptotic safety in quantum gravity</span> Attempt to find a consistent theory of quantum gravity

Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.

The pressuron is a hypothetical scalar particle which couples to both gravity and matter theorised in 2013. Although originally postulated without self-interaction potential, the pressuron is also a dark energy candidate when it has such a potential. The pressuron takes its name from the fact that it decouples from matter in pressure-less regimes, allowing the scalar–tensor theory of gravity involving it to pass solar system tests, as well as tests on the equivalence principle, even though it is fundamentally coupled to matter. Such a decoupling mechanism could explain why gravitation seems to be well described by general relativity at present epoch, while it could actually be more complex than that. Because of the way it couples to matter, the pressuron is a special case of the hypothetical string dilaton. Therefore, it is one of the possible solutions to the present non-observation of various signals coming from massless or light scalar fields that are generically predicted in string theory.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

Infinite derivative gravity is a theory of gravity which attempts to remove cosmological and black hole singularities by adding extra terms to the Einstein–Hilbert action, which weaken gravity at short distances.

Degenerate Higher-Order Scalar-Tensor theories are theories of modified gravity. They have a Lagrangian containing second-order derivatives of a scalar field but do not generate ghosts, because they only contain one propagating scalar mode.

Within general relativity (GR), Einstein's relativistic gravity, the gravitational field is described by the 10-component metric tensor. However, in Newtonian gravity, which is a limit of GR, the gravitational field is described by a single component Newtonian gravitational potential. This raises the question to identify the Newtonian potential within the metric, and to identify the physical interpretation of the remaining 9 fields.

References

  1. Horndeski, Gregory Walter (1974-09-01). "Second-order scalar-tensor field equations in a four-dimensional space". International Journal of Theoretical Physics. 10 (6): 363–384. Bibcode:1974IJTP...10..363H. doi:10.1007/BF01807638. ISSN   0020-7748. S2CID   122346086.
  2. Clifton, Timothy; Ferreira, Pedro G.; Padilla, Antonio; Skordis, Constantinos (March 2012). "Modified Gravity and Cosmology". Physics Reports. 513 (1–3): 1–189. arXiv: 1106.2476 . Bibcode:2012PhR...513....1C. doi:10.1016/j.physrep.2012.01.001. S2CID   119258154.
  3. Deffayet, C.; Esposito-Farese, G.; Vikman, A. (2009-04-03). "Covariant Galileon". Physical Review D. 79 (8): 084003. arXiv: 0901.1314 . Bibcode:2009PhRvD..79h4003D. doi:10.1103/PhysRevD.79.084003. ISSN   1550-7998. S2CID   118855364.
  4. Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi (2011-09-01). "Generalized G-inflation: Inflation with the most general second-order field equations". Progress of Theoretical Physics. 126 (3): 511–529. arXiv: 1105.5723 . Bibcode:2011PThPh.126..511K. doi:10.1143/PTP.126.511. ISSN   0033-068X. S2CID   118587117.
  5. ATLAS Collaboration (2019-03-04). "Constraints on mediator-based dark matter and scalar dark energy models using TeV collision data collected by the ATLAS detector". Jhep. 05: 142. arXiv: 1903.01400 . doi:10.1007/JHEP05(2019)142. S2CID   119182921.
  6. Lombriser, Lucas; Taylor, Andy (2016-03-16). "Breaking a Dark Degeneracy with Gravitational Waves". Journal of Cosmology and Astroparticle Physics. 2016 (3): 031. arXiv: 1509.08458 . Bibcode:2016JCAP...03..031L. doi:10.1088/1475-7516/2016/03/031. ISSN   1475-7516. S2CID   73517974.
  7. Bettoni, Dario; Ezquiaga, Jose María; Hinterbichler, Kurt; Zumalacárregui, Miguel (2017-04-14). "Speed of Gravitational Waves and the Fate of Scalar-Tensor Gravity". Physical Review D. 95 (8): 084029. arXiv: 1608.01982 . Bibcode:2017PhRvD..95h4029B. doi:10.1103/PhysRevD.95.084029. ISSN   2470-0010. S2CID   119186001.
  8. Creminelli, Paolo; Vernizzi, Filippo (2017-10-16). "Dark Energy after GW170817". Physical Review Letters. 119 (25): 251302. arXiv: 1710.05877 . Bibcode:2017PhRvL.119y1302C. doi:10.1103/PhysRevLett.119.251302. PMID   29303308. S2CID   206304918.
  9. Sakstein, Jeremy; Jain, Bhuvnesh (2017-10-16). "Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories". Physical Review Letters. 119 (25): 251303. arXiv: 1710.05893 . Bibcode:2017PhRvL.119y1303S. doi:10.1103/PhysRevLett.119.251303. PMID   29303345. S2CID   39068360.
  10. Ezquiaga, Jose María; Zumalacárregui, Miguel (2017-12-18). "Dark Energy After GW170817: Dead Ends and the Road Ahead". Physical Review Letters. 119 (25): 251304. arXiv: 1710.05901 . Bibcode:2017PhRvL.119y1304E. doi:10.1103/PhysRevLett.119.251304. PMID   29303304. S2CID   38618360.
  11. Grossman, Lisa (2017-10-24). "What detecting gravitational waves means for the expansion of the universe". Science News. Retrieved 2017-11-08.