Hydrazine nitrate

Last updated
Hydrazine nitrate
Hydrazine nitrate.png
Names
Other names
hydrazinium nitrate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.341 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/H4N2.HNO3/c1-2;2-1(3)4/h1-2H2;(H,2,3,4)
    Key: AFEBXVJYLNMAJB-UHFFFAOYSA-N
  • NN.[N+](=O)(O)[O-]
Properties
Molar mass 95.02
AppearanceClear liquid
Density 1.64 g/cm3
Melting point 72°C
Soluble in water
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Hydrazine nitrate is an inorganic compound with the chemical formula N 2 H 4·HNO 3. It has usage in liquid explosives as an oxidizer. It exists in two crystalline forms, stable α-type and unstable β-type. The former is usually used in explosives. Its solubility is small in alcohols but large in water and hydrazine. It has strong hygroscopicity, only slightly lower than ammonium nitrate. [1]

Contents

Hydrazine nitrate has a good thermal stability. Its weight loss rate at 100 °C is slower than that of ammonium nitrate. Its explosion point is 307 °C (50% detonation) and explosion heat is about 3.829 MJ/kg. Because it has no carbon elements, the detonation products are not solid and their average molecular weight is small. [1]

Production

Hydrazine nitrate is produced by the reaction of hydrazine and nitric acid: [2]

N2H4 + HNO3 → N2H5NO3

Related Research Articles

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">Nitrogen</span> Chemical element with atomic number 7 (N)

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colourless and odourless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Nitric acid</span> Highly corrosive mineral acid

Nitric acid is an inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

<span class="mw-page-title-main">Hydrazine</span> Colorless flammable liquid with an ammonia-like odor

Hydrazine is an inorganic compound with the chemical formula N2H4. It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly hazardous unless handled in solution as, for example, hydrazine hydrate.

<span class="mw-page-title-main">Ammonium nitrate</span> Chemical compound with formula NH4NO3

Ammonium nitrate is a chemical compound with the formula NH4NO3. It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is predominantly used in agriculture as a high-nitrogen fertilizer.

<span class="mw-page-title-main">ANFO</span> Explosive

ANFO ( AN-foh) (or AN/FO, for ammonium nitrate/fuel oil) is a widely used bulk industrial high explosive. It consists of 94% porous prilled ammonium nitrate (NH4NO3) (AN), which acts as the oxidizing agent and absorbent for the fuel, and 6% number 2 fuel oil (FO). The use of ANFO originated in the 1950s.

Nitromethane, sometimes shortened to simply "nitro", is an organic compound with the chemical formula CH
3
NO
2
. It is the simplest organic nitro compound. It is a polar liquid commonly used as a solvent in a variety of industrial applications such as in extractions, as a reaction medium, and as a cleaning solvent. As an intermediate in organic synthesis, it is used widely in the manufacture of pesticides, explosives, fibers, and coatings. Nitromethane is used as a fuel additive in various motorsports and hobbies, e.g. Top Fuel drag racing and miniature internal combustion engines in radio control, control line and free flight model aircraft.

A propellant is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicles, the engine that expels the propellant is called a reaction engine. Although technically a propellant is the reaction mass used to create thrust, the term "propellant" is often used to describe a substance which contains both the reaction mass and the fuel that holds the energy used to accelerate the reaction mass. For example, the term "propellant" is often used in chemical rocket design to describe a combined fuel/propellant, although the propellants should not be confused with the fuel that is used by an engine to produce the energy that expels the propellant. Even though the byproducts of substances used as fuel are also often used as a reaction mass to create the thrust, such as with a chemical rocket engine, propellant and fuel are two distinct concepts.

Aerozine 50 is a 50:50 mix by weight of hydrazine and unsymmetrical dimethylhydrazine (UDMH), developed in the late 1950s by Aerojet General Corporation as a storable, high-energy, hypergolic fuel for the Titan II ICBM rocket engines. Aerozine continues in wide use as a rocket fuel, typically with dinitrogen tetroxide as the oxidizer, with which it is hypergolic. Aerozine 50 is more stable than hydrazine alone, and has a higher density and boiling point than UDMH alone.

<span class="mw-page-title-main">Ammonal</span> Explosive made of ammonium nitrate and aluminium

Ammonal is an explosive made up of ammonium nitrate and aluminium powder. TNT is added to create T-ammonal which improves properties such as brisance. The mixture is often referred to as Tannerite, which is a brand of ammonal.

<span class="mw-page-title-main">Hydrazoic acid</span> Unstable and toxic chemical compound

Hydrazoic acid, also known as hydrogen azide, azic acid or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

Astrolite is the trade name of a family of explosives, invented by chemist Gerald Hurst in the 1960s during his employment with the Atlas Powder Company. The Astrolite family consists of two compounds, Astrolite G and Astrolite A. Both are two-part liquid-state high explosive mixtures, composed of ammonium nitrate oxidizer and hydrazine rocket fuel. The explosives were extensively studied, manufactured, and used in many countries because of their advantages of high energy, excellent performance, and wide application. They still find some use in commercial and civil blasting applications, but have mostly been superseded by cheaper and safer compounds, largely due to the expense and exceptionally poisonous nature of the hydrazine component.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

<span class="mw-page-title-main">Erythritol tetranitrate</span> Chemical compound

Erythritol tetranitrate (ETN) is an explosive compound chemically similar to PETN, though it is thought to be slightly more sensitive to friction and impact.

<span class="mw-page-title-main">Urea nitrate</span> Chemical compound

Urea nitrate is a fertilizer-based high explosive that has been used in improvised explosive devices in Afghanistan, Pakistan, Iraq, and various terrorist acts elsewhere in the world such as in the 1993 World Trade Center bombings. It has a destructive power similar to better-known ammonium nitrate explosives, with a velocity of detonation between 3,400 m/s (11,155 ft/s) and 4,700 m/s (15,420 ft/s). It has chemical formula of CH5N3O4 or (NH2)2COHNO3.

<span class="mw-page-title-main">Carbohydrazide</span> Chemical compound

Carbohydrazide is the chemical compound with the formula OC(N2H3)2. It appears as a white solid that is soluble in water, but not in many organic solvents, such as ethanol, ether or benzene. It decomposes upon melting. A number of carbazides are known where one or more N-H groups are replaced by other substituents. They occur widely in the drugs, herbicides, plant growth regulators, and dyestuffs.

<span class="mw-page-title-main">Ammonium dinitramide</span> Chemical compound

Ammonium dinitramide (ADN) is an inorganic compound with the chemical formula [NH4][N(NO2)2]. It is the ammonium salt of dinitraminic acid HN(NO2)2. It consists of ammonium cations [NH4]+ and dinitramide anions N(NO2)2. ADN decomposes under heat to leave only nitrogen, oxygen, and water.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used in a rocket engine

Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

Bulk loaded liquid propellants are an artillery technology that was pursued at the U.S. Army Research Laboratory and U.S. Naval Weapons Center from the 1950s through the 1990s. The advantages would be simpler guns and a wider range of tactical and logistic options. Better accuracy and tactical flexibility would theoretically come from standard shells with varying propellant loads, and logistic simplification by eliminating varying powder loads.

<span class="mw-page-title-main">Nickel hydrazine nitrate</span> Chemical compound

Nickel hydrazine nitrate (NHN), (chemical formula: [Ni(N2H4)3](NO3)2 is an energetic material having explosive properties in between that of primary explosive and a secondary explosive. It is a salt of a coordination compound of nickel with a reaction equation of 3N2H4·H2O + Ni(NO3)2 →〔Ni(N2H4)3〕(NO3)2 + 3H2O

References

  1. 1 2 Liu, Jiping (2015). Liquid Explosives. Springer. p. 6. doi:10.1007/978-3-662-45847-1. ISBN   9783662458464.
  2. D. G. Karraker (1981). Cu(II) - Catalyzed Hydrazine Reduction of Ferric Nitrate (PDF) (Technical report). United States Department of Energy. doi: 10.2172/5658572 .

Further reading