Hydroacylation

Last updated

Hydroacylation is a type of organic reaction in which an electron-rich [1] unsaturated hydrocarbon inserts into a formyl C-H bond. With alkenes, the product is a ketone:

Contents

RCHO + CH2=CHR' → RC(O)CH2CH2R'

With an alkyne instead, the reaction produces an α,β-unsaturated ketone. [2]

The reaction requires a metal catalyst or a radical initiator. [1] It is almost invariably practiced as an intramolecular reaction using homogeneous catalysts, often based on rhodium phosphines.

History

The reaction was discovered in the 1970s as part of a synthetic route to certain prostanoids. [3] The reaction required tin tetrachloride and a stoichiometric amount of Wilkinson's catalyst:

HydroacylationSakai1972.svg

An equal amount of a cyclopropane was formed as the result of decarbonylation.

The first catalytic application involved cyclization of 4-pentenal to cyclopentanone using (again) Wilkinson's catalyst. [4] In this reaction the solvent was saturated with ethylene.

CH2=CHCH2CH2CHO → (CH2)4CO

Reaction mechanism

Labeling studies establish the following regiochemistry:

RCDO + CH2=CHR' → RC(O)CH2CHDR'

In terms of the reaction mechanism, hydroacylation begins with oxidative addition of the aldehydic carbon-hydrogen bond. The resulting acyl hydride complex next binds the alkene. The sequence of oxidative addition and alkene coordination is often unclear. Via migratory insertion, the alkene inserts into either the metal-acyl or the metal-hydride bonds. In the final step, the resulting alkyl-acyl or beta-ketoalkyl-hydride complex undergoes reductive elimination. [2] A competing side-reaction is decarbonylation of the aldehyde. This process also proceeds via the intermediacy of the acyl metal hydride:

R"C(O)-MLn-H → R"-M(CO)Ln-H

This step can be followed by reductive elimination of the alkane:

R"-M(CO)Ln-H → R"-H + M(CO)Ln
Hydroacylation reactionMechanism.svg

Asymmetric hydroacylation

Hydroacylation as an asymmetric reaction was demonstrated in the form of a kinetic resolution. [5] [6] A true asymmetric synthesis was also described. [7] [8] Both conversions employed rhodium catalysts and a chiral diphosphine ligand. In one application the ligand is Me-DuPhos: [9]

AsymmetrichydroAcylationMarce2008.svg

Related Research Articles

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

In organic chemistry, hydroformylation, also known as oxo synthesis or oxo process, is an industrial process for the production of aldehydes from alkenes. This chemical reaction entails the net addition of a formyl group and a hydrogen atom to a carbon-carbon double bond. This process has undergone continuous growth since its invention: production capacity reached 6.6×106 tons in 1995. It is important because aldehydes are easily converted into many secondary products. For example, the resultant aldehydes are hydrogenated to alcohols that are converted to detergents. Hydroformylation is also used in speciality chemicals, relevant to the organic synthesis of fragrances and pharmaceuticals. The development of hydroformylation is one of the premier achievements of 20th-century industrial chemistry.

<span class="mw-page-title-main">Wilkinson's catalyst</span> Chemical compound

Wilkinson's catalyst (chlorido­tris(triphenylphosphine)­rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh3)], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane. The compound is widely used as a catalyst for hydrogenation of alkenes. It is named after chemist and Nobel laureate Sir Geoffrey Wilkinson, who first popularized its use.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

Hydrosilylation, also called catalytic hydrosilation, describes the addition of Si-H bonds across unsaturated bonds. Ordinarily the reaction is conducted catalytically and usually the substrates are unsaturated organic compounds. Alkenes and alkynes give alkyl and vinyl silanes; aldehydes and ketones give silyl ethers. Hydrosilylation has been called the "most important application of platinum in homogeneous catalysis."

<span class="mw-page-title-main">Hydroamination</span> Addition of an N–H group across a C=C or C≡C bond

In organic chemistry, hydroamination is the addition of an N−H bond of an amine across a carbon-carbon multiple bond of an alkene, alkyne, diene, or allene. In the ideal case, hydroamination is atom economical and green. Amines are common in fine-chemical, pharmaceutical, and agricultural industries. Hydroamination can be used intramolecularly to create heterocycles or intermolecularly with a separate amine and unsaturated compound. The development of catalysts for hydroamination remains an active area, especially for alkenes. Although practical hydroamination reactions can be effected for dienes and electrophilic alkenes, the term hydroamination often implies reactions metal-catalyzed processes.

Bis(oxazoline) ligands (often abbreviated BOX ligands) are a class of privileged chiral ligands containing two oxazoline rings. They are typically C2‑symmetric and exist in a wide variety of forms; with structures based around CH2 or pyridine linkers being particularly common (often generalised BOX and PyBOX respectively). The coordination complexes of bis(oxazoline) ligands are used in asymmetric catalysis. These ligands are examples of C2-symmetric ligands.

<span class="mw-page-title-main">Metallacycle</span>

In organometallic chemistry, a metallacycle is a derivative of a carbocyclic compound wherein a metal has replaced at least one carbon center; this is to some extent similar to heterocycles. Metallacycles appear frequently as reactive intermediates in catalysis, e.g. olefin metathesis and alkyne trimerization. In organic synthesis, directed ortho metalation is widely used for the functionalization of arene rings via C-H activation. One main effect that metallic atom substitution on a cyclic carbon compound is distorting the geometry due to the large size of typical metals.

Organogold chemistry is the study of compounds containing gold–carbon bonds. They are studied in academic research, but have not received widespread use otherwise. The dominant oxidation states for organogold compounds are I with coordination number 2 and a linear molecular geometry and III with CN = 4 and a square planar molecular geometry.

Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols.

In organic chemistry, the Baylis–Hillman, Morita–Baylis–Hillman, or MBH reaction is a carbon-carbon bond-forming reaction between an activated alkene and a carbon electrophile in the presence of a nucleophilic catalyst, such as a tertiary amine or phosphine. The product is densely functionalized, joining the alkene at the α-position to a reduced form of the electrophile.

In chemistry, metal-catalysed hydroboration is a reaction used in organic synthesis. It is one of several examples of homogeneous catalysis.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Trisoxazolines</span>

Trisoxazolines are a class of tridentate, chiral ligands composed of three oxazoline rings. Despite being neutral they are able to form stable complexes with high oxidation state metals, such as rare earths, due to the chelate effect. The ligands have been investigated for molecular recognition and their complexes are used in asymmetric catalysts and polymerisation.

Hydrophosphination is the insertion of a carbon-carbon multiple bond into a phosphorus-hydrogen bond forming a new phosphorus-carbon bond. Like other hydrofunctionalizations, the rate and regiochemistry of the insertion reaction is influenced by the catalyst. Catalysts take many forms, but most prevalent are bases and free-radical initiators. Most hydrophosphinations involve reactions of phosphine (PH3).

<span class="mw-page-title-main">Ugi's amine</span> Chemical compound

Ugi’s amine is an organometallic compound with the formula (C5H5)Fe(C5H4CH N 2. It is named for the chemist who first reported its synthesis in 1970, Ivar Ugi. It is a ferrocene derivative. Ugi’s amine is a precursor to ligands, most notably, the Josiphos ligands, which have been used in asymmetric catalysis

The Tsuji–Wilkinson decarbonylation reaction is a method for the decarbonylation of aldehydes and some acyl chlorides. The reaction name recognizes Jirō Tsuji, whose team first reported the use of Wilkinson's catalyst (RhCl(PPh3)3) for these reactions:

In organic chemistry, hydrovinylation is the formal insertion of an alkene into the C-H bond of ethylene :

Heterobimetallic catalysis is an approach to catalysis that employs two different metals to promote a chemical reaction. Included in this definition are cases where: 1) each metal activates a different substrate, 2) both metals interact with the same substrate, and 3) only one metal directly interacts with the substrate(s), while the second metal interacts with the first.

Jiro Tsuji was a Japanese chemist, notable for his discovery of organometallic reactions, including the Tsuji-Trost reaction, the Tsuji-Wilkinson decarbonylation, and the Tsuji-Wacker reaction.

References

  1. 1 2 Smith (2020), March's Organic Chemistry, 8th ed. Rxn. 15-30.
  2. 1 2 Michael C. Willis (2009). "Transition Metal Catalyzed Alkene and Alkyne Hydroacylation". Chem. Rev. 110 (2): 725–748. doi:10.1021/cr900096x. PMID   19873977.
  3. K. Sakai; J. Ide; O. Oda; N. Nakamura (1972). "Synthetic studies on prostanoids 1 synthesis of methyl 9-oxoprostanoate". Tetrahedron Letters . 13 (13): 1287–1290. doi:10.1016/S0040-4039(01)84569-X.
  4. Transition-Metal-Promoted Aldehyde-Alkene Addition Reactions Charles F. Lochow, Roy G. Miller J. Am. Chem. Soc., 1976, 98 (5), pp 1281–1283 doi : 10.1021/ja00421a050
  5. The Asymmetric cyclisation of substituted pent-4-enals by a chiral rhodium phosphine catalyst Brian R. James and Charles G. Young J. Chem. Soc., Chem. Commun., 1983, 1215 - 1216, doi : 10.1039/C39830001215
  6. Catalytic decarbonylation, hydroacylation, and resolution of racemic pent-4-enals using chiral bis(di-tertiary-phosphine) complexes of rhodium(I) Brian R. James, and Charles G. Young Journal of Organometallic Chemistry Volume 285, 1985, Pages 321-332 doi : 10.1016/0022-328X(85)87377-0
  7. Asymmetric cyclization reactions by Rh(I) with chiral ligands Yukari Tauraa, Masakazu Tanakaa, Kazuhisa Funakoshia and Kiyoshi Sakai. Tetrahedron Letters . Volume 30, Issue 46, 1989, Pages 6349-6352 doi : 10.1016/S0040-4039(01)93891-2
  8. Asymmetric cyclization reactions. Cyclization of substituted 4-pentenals into cyclopentanone derivatives by rhodium(I) with chiral ligands Yukari Taura, Masakazu Tanaka, Xiao-Ming Wu, Kazuhisa Funakoshi and Kiyoshi Sakai. Tetrahedron . Volume 47, Issue 27, 1991, Pages 4879-4888 doi : 10.1016/S0040-4020(01)80954-6
  9. Synthesis of D- and L-Carbocyclic Nucleosides via Rhodium-Catalyzed Asymmetric Hydroacylation as the Key Step Patricia Marce, Yolanda Dıaz, M. Isabel Matheu, Sergio Castillon Org. Lett., 2008, 10 (21), pp 4735–4738 doi : 10.1021/ol801791g