Hydrogel agriculture

Last updated

Common hydrogel agriculture's ingredient is potassium polyacrylate or sodium polyacrylate. As a superabsorbent material, it can absorb plenty of water and turn water to gel to store water.

Contents

Hydrogel agriculture technology uses insoluble gel-forming polymers to improve the water-holding properties of different soils, such as clays and sandy loams. This can increase water-holding and water use (up to 85% for sand), improve soil permeability, reduce the need for irrigation, reduce compaction, soil erosion, and leaching, and improve plant growth.

Desertification and lack of water threaten agriculture in many arid and semi-arid regions of the world; these may be mitigated with hydrogels. [1]

Hydrogels

Hydrogels are hydrophilic crosslinked polymers that form three-dimensional molecular networks which can absorb and hold great amounts of water. [2]

Different type of hydrogels in agriculture

Different types may be suitable for agricultural use.

Potential uses in agriculture

Hydrogels of different kinds could be useful in agriculture, reducing drought stress in plants, making better use of irrigation water and fertilizer. [6] [7] [8]

Superabsorbent hydrogel polymers can in principle influence soil permeability, density, structure, texture, evaporation and infiltration rates of water through soils. [7] They can also allow pesticides to be released slowly over a long period, increasing effectiveness and reducing side-effects such as pesticide runoff. There has therefore been considerable research interest into the possible use of hydrogels in agriculture. [9] For example, a hydrogel based on gum tragacanth increases the water content of clay soil by up to 5.35% and of sandy loam by up to 5.5%; it could also be used to release calcium chloride slowly over a prolonged period. [10]

Suitably prepared hydrogels can simultaneously supply and slowly release pesticides (such as herbicides) in the soil, and increase a sandy soil's retention of water. Hydrogels developed for this purpose include polymers of oligooxyethylene methacrylate, linked by ionic and covalent bonds to a herbicide such as 4-chloro-2-methylphenoxyacetic acid (CMPA). Other hydrophilic polymers studied have been made from a variety of different acrylate monomers to release the pesticides 2,4-D and CMPA. These offer different combinations of pesticide release rate and soil water retention. Hydrogels can also be used to encapsulate the insecticide cypermethrin and the fungicide copper sulphate. Superabsorbent polymers can be used to release phosphate fertiliser slowly, by making an ester bond between polyvinyl alcohol and phosphoric acid. A polymer/clay superabsorbent composite material made by attaching acrylamide to finely powdered attapulgite (a fuller's earth clay) shows promise for its excellent water retention and low cost compared to polyacrylamide hydrogel. [8]

Commercialization

In 2015, The Indian Agriculture Research Institute (IARI) reported the development of a novel hydrogel for agricultural use. It was intended to help farmers to cope with drought, making efficient use of water in arid and semi-arid regions of India. the product is to be commercialized by the Ministry of Science and Technology's National Research Development Corporation (NRDC) in collaboration with a company based in Chennai, Reliance Industries Limited. [11]

In 2016, a water absorbing material named Alsta hydrogel was introduced in the India agriculture market after testing from NTC Pune with a potential to absorb water 400 times of its own weight. It is a potassium polyacrylate based granular non-toxic polymer and soil conditioner that is compatible with all kind of soils and crops to greatly reduce irrigation frequency and loss of soil moisture by leaching and evaporation.[ citation needed ]

Alsta hydrogel, as many others, does not present any internationally recognised certificate about its non-toxicity on human, animal or microorganisms naturally present in soils, neither on its biodegradability or its transfer of elements to the plants growing with it. Statements remain to be measured by an independent certified laboratory.

See also

Related Research Articles

<span class="mw-page-title-main">Aspartic acid</span> Amino acid

Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the protonated –NH+
3
form under physiological conditions, while its α-carboxylic acid group is deprotonated −COO under physiological conditions. Aspartic acid has an acidic side chain (CH2COOH) which reacts with other amino acids, enzymes and proteins in the body. Under physiological conditions (pH 7.4) in proteins the side chain usually occurs as the negatively charged aspartate form, −COO. It is a non-essential amino acid in humans, meaning the body can synthesize it as needed. It is encoded by the codons GAU and GAC.

<span class="mw-page-title-main">Polyacrylamide gel electrophoresis</span>

Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and charge of the molecule. Polyacrylamide gel electrophoresis is a powerful tool used to analyze RNA samples. When polyacrylamide gel is denatured after electrophoresis, it provides information on the sample composition of the RNA species.

<span class="mw-page-title-main">Polyacrylamide</span> Chemical compound

Polyacrylamide (abbreviated as PAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, mainly for water treatment and the paper and mineral industries.

<span class="mw-page-title-main">Hydrogel</span>

A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel' was coined in 1894.

A soil conditioner is a product which is added to soil to improve the soil’s physical qualities, usually its fertility and sometimes its mechanics. In general usage, the term "soil conditioner" is often thought of as a subset of the category soil amendments, which more often is understood to include a wide range of fertilizers and non-organic materials.

<span class="mw-page-title-main">Sodium polyacrylate</span> Anionic polyelectrolyte polymer

Sodium polyacrylate (ACR, ASAP, or PAAS), also known as waterlock, is a sodium salt of polyacrylic acid with the chemical formula [−CH2−CH(CO2Na)−]n and has broad applications in consumer products. This super-absorbent polymer (SAP) has the ability to absorb 100 to 1000 times its mass in water. Sodium polyacrylate is an anionic polyelectrolyte with negatively charged carboxylic groups in the main chain. Sodium polyacrylate is a chemical polymer made up of chains of acrylate compounds. It contains sodium, which gives it the ability to absorb large amounts of water. When dissolved in water, it forms a thick and transparent solution due to the ionic interactions of the molecules. Sodium polyacrylate has many favorable mechanical properties. Some of these advantages include good mechanical stability, high heat resistance, and strong hydration. It has been used as an additive for food products including bread, juice, and ice cream.

<span class="mw-page-title-main">Acrylate polymer</span> Group of polymers prepared from acrylate monomers

An acrylate polymer is any of a group of polymers prepared from acrylate monomers. These plastics are noted for their transparency, resistance to breakage, and elasticity.

<span class="mw-page-title-main">Superabsorbent polymer</span> Polymers that can absorb and retain extremely large amounts of a liquid relative to their own mass

A superabsorbent polymer (SAP) is a water-absorbing hydrophilic homopolymers or copolymers that can absorb and retain extremely large amounts of a liquid relative to its own mass.

<span class="mw-page-title-main">Biodegradable polymer</span>

Biodegradable polymers are a special class of polymer that breaks down after its intended purpose by bacterial decomposition process to result in natural byproducts such as gases (CO2, N2), water, biomass, and inorganic salts. These polymers are found both naturally and synthetically made, and largely consist of ester, amide, and ether functional groups. Their properties and breakdown mechanism are determined by their exact structure. These polymers are often synthesized by condensation reactions, ring opening polymerization, and metal catalysts. There are vast examples and applications of biodegradable polymers.

<span class="mw-page-title-main">Polyacrylic acid</span> Anionic polyelectrolyte polymer

Poly(acrylic acid) (PAA; trade name Carbomer) is a polymer with the formula (CH2-CHCO2H)n. It is a derivative of acrylic acid (CH2=CHCO2H). In addition to the homopolymers, a variety of copolymers and crosslinked polymers, and partially deprotonated derivatives thereof are known and of commercial value. In a water solution at neutral pH, PAA is an anionic polymer, i.e., many of the side chains of PAA lose their protons and acquire a negative charge. Partially or wholly deprotonated PAAs are polyelectrolytes, with the ability to absorb and retain water and swell to many times their original volume. These properties – acid-base and water-attracting – are the bases of many applications.

<i>N</i>,<i>N</i>-Methylenebisacrylamide Chemical compound

N,N′-Methylenebisacrylamide (MBAm or MBAA) is the organic compound with the formula CH2[NHC(O)CH=CH2]2. A colorlesss solid, this compound is a crosslinking agent in polyacrylamides, e.g., as used for SDS-PAGE.

<span class="mw-page-title-main">2-Acrylamido-2-methylpropane sulfonic acid</span> Chemical compound

2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was a Trademark name by The Lubrizol Corporation. It is a reactive, hydrophilic, sulfonic acid acrylic monomer used to alter the chemical properties of wide variety of anionic polymers. In the 1970s, the earliest patents using this monomer were filed for acrylic fiber manufacturing. Today, there are over several thousands patents and publications involving use of AMPS in many areas including water treatment, oil field, construction chemicals, hydrogels for medical applications, personal care products, emulsion coatings, adhesives, and rheology modifiers.

Smart polymers, stimuli-responsive polymers or functional polymers are high-performance polymers that change according to the environment they are in. Such materials can be sensitive to a number of factors, such as temperature, humidity, pH, chemical compounds, the wavelength or intensity of light or an electrical or magnetic field and can respond in various ways, like altering color or transparency, becoming conductive or permeable to water or changing shape. Usually, slight changes in the environment are sufficient to induce large changes in the polymer's properties.

Xploderz is a line of toy weapons made by The Maya Group to compete with Hasbro's Nerf Super Soaker line and marketed as a safer alternative to paintball. The concept is based on Orbeez, a girls' toy line also by The Maya Group that uses water-absorbent gel pellets, and hence is sometimes referred to as "Orbeez ball shooters".

<span class="mw-page-title-main">SNF Floerger</span>

SNF is the global leader in manufacturing polyacrylamides with a capacity of 1190 kt/y. These water-soluble polymers are used as flocculants and coagulants in solid/water separation to recycle water, rheology modifiers and friction reducers. These functionalities have many uses where water is used, in drinking water production, wastewater treatment, mining, paper, enhanced oil recovery, hydraulic fracturing, agriculture, textile and cosmetics.

<span class="mw-page-title-main">Polyaspartic acid</span> Chemical compound

Polyaspartic acid (PASA) is a biodegradable, water-soluble condensation polymer based on the amino acid aspartic acid. It is a biodegradable replacement for water softeners and related applications. PASA can be chemically crosslinked with a wide variety of methods to yield PASA hydrogels. The resulting hydrogels are pH-sensitive such that under acidic conditions, they shrink, while the swelling capacity increases under alkaline conditions.

<span class="mw-page-title-main">Polymer soil stabilization</span> Engineering technique

Polymer soil stabilization refers to the addition of polymers to improve the physical properties of soils, most often for geotechnical engineering, construction, or agricultural projects. Even at very small concentrations within soils, various polymers have been shown to increase water retention and reduce erosion, increase soil shear strength, and support soil structure. A wide range of polymers have been used to address problems ranging from the prevention of desertification to the reinforcement of roadbeds.

1-Vinylimidazole is a water-soluble basic monomer that forms quaternizable homopolymers by free-radical polymerization with a variety of vinyl and acrylic monomers. The products are functional copolymers, which are used as oil field chemicals and as cosmetic auxiliaries. 1-Vinylimidazole acts as a reactive diluent in UV lacquers, inks, and adhesives.

<span class="mw-page-title-main">Polycarboxylates</span>

Polycarboxylates are linear polymers with a high molecular mass and with many carboxylate groups. They are polymers of acrylic acid or copolymers of acrylic acid and maleic acid. The polymer is used as the sodium salt.

<span class="mw-page-title-main">Potassium polyacrylate</span> Chemical compound

Potassium polyacrylate is a potassium salt of polyacrylic acid with the chemical formula [−CH2−CH(CO2K)−]n. As a type of superabsorbent polymer, it can absorb hundreds of times its original weight in purified water.

References

  1. Vundavallia, Ramesh (2015). "Biodegradable Nano-Hydrogels in Agricultural Farming-Alternative Source For Water Resources". Procedia Materials Science. 10: 548–554. doi: 10.1016/j.mspro.2015.06.005 .
  2. Ahmed, Enas M. (2015). "Hydrogel: Preparation, characterization, and applications: A review". Journal of Advanced Research. 6 (2): 105–121. doi:10.1016/j.jare.2013.07.006. PMC   4348459 . PMID   25750745.
  3. Jyothi, A.N. (2010). "Starch Graft Copolymers: Novel Applications in Industry". Composite Interfaces. 17 (2–3): 165–174. doi:10.1163/092764410X490581.
  4. "Acrylic acid polymer,neutralized, cross-linked". Occupational Toxicants. 15: 1–29. 31 January 2012. doi: 10.1002/3527600418.mb900301nete0015 . ISBN   978-3527600410.
  5. Cheng, Peiyao (2004). Chemical and photolytic degradation of polyacrylamides used in potable water treatment. University of South Florida (PhD Thesis).
  6. Narjari, Bhaskar; Aggarwal, Pramila; Kumar, Satyendra; M.D, Meena (2013). "Significance of Hydrogel and its application in agriculture". Indian Farming. 62 (10): 15–17.
  7. 1 2 L. O., Ekebafe; Ogbeifun, D. E.; Okieimen, F. E. (2011). "Polymer Applications in Agricultur e". Biokemistri. 23: 81–89.
  8. 1 2 Puoci, Francesco; et al. (2008). "Polymer in Agriculture: A Review" (PDF). American Journal of Agricultural and Biological Sciences. 3 (1): 299–314. doi: 10.3844/ajabssp.2008.299.314 .
  9. Rudzinski, W. E.; et al. (2002). "Hydrogels as controlled release devices in agriculture: Review". Designed Monomers and Polymers. 5 (1): 39–65. doi:10.1163/156855502760151580.
  10. Suruchinit, J.; Kaith, Balbir Singh; Jindal, Rajeev; Kapur, G. S.; Kumar, Vaneet (2014). "Synthesis, characterization and evaluation of Gum tragacanth and acrylic acid based hydrogel for sustained calcium chloride release – enhancement of water-holding capacity of soil". Journal of the Chinese Advanced Materials Society. 2 (1): 40–52. doi:10.1080/22243682.2014.893412.
  11. Mohan, Vishwa (15 January 2015). "Hydrogel agriculture technology". Times of India.