This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Hydrogen leak testing is the normal way in which a hydrogen pressure vessel or installation is checked for leaks or flaws. This usually involves charging hydrogen as a tracer gas into the device undergoing testing, with any leaking gas detected by hydrogen sensors. [1] Various test mechanisms have been devised.
In the hydrostatic test, a vessel is filled with a nearly incompressible liquid – usually water or oil – and examined for leaks or permanent changes in shape. The test pressure is always considerably higher than the operating pressure to give a margin for safety, typically 150% of the operating pressure.
In the burst test, a vessel is filled with a gas and tested for leaks. The test pressure is always considerably more than the operating pressure to give a margin for safety, typically 200% or more of the operating pressure.
The helium leak test uses helium (the lightest inert gas) as a tracer gas and detects it in concentrations as small as one part in 10 million. The helium is selected primarily because it penetrates small leaks readily, is inert and will not react with the test piece while having a naturally low quantity in air making detection less complicated. It is possible to detect leaks as small as 5x10−10 Pa·m3/s in vacuum mode and modern digital machines can detect 5x10−10 Pa·m3/s in sniffing mode.
Usually a vacuum inside the object is created with an external pump connected to the instrument. Alternatively helium can be injected inside the product while the product itself is enclosed in a vacuum chamber connected to the instrument. In this case, burst and leakage tests can be combined in one operation.
During the hydrogen sensor test, the object is filled with a mixture of 5% hydrogen/ 95% nitrogen, (below 5.7% hydrogen) is non-flammable (ISO-10156). This is called typically a sniffing test. The handprobe connected to the microelectronic hydrogen sensors is used to check the object. An audiosignal increases in proximity of a leak. Detection of leaks go down to 5x10−7 cubic centimeters per second. [2] Compared to the helium test, hydrogen is cheaper than helium, no need for a vacuum, the instrument could be cheaper but is not as sensitive as a helium leak detector so will not find smaller leaks.
Chemo-chromic hydrogen leak detectors are materials that can be proactively applied to a connection or fitting. In the event of a hydrogen leak, the chemo-chromic material changes color to alert an inspector that a leak is present. Chemo-chromic indicators can also be added to silicone tapes for hydrogen detection purposes. [3]
A Geiger counter is an electronic instrument used for detecting and measuring ionizing radiation. It is widely used in applications such as radiation dosimetry, radiological protection, experimental physics and the nuclear industry.
Smoke testing refers to various classes of tests of systems, usually intended to determine whether they are ready for more robust testing. The expression probably was first used in plumbing in referring to tests for the detection of cracks, leaks or breaks in closed systems of pipes.
The Geiger–Müller tube or G–M tube is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It is named after Hans Geiger, who invented the principle in 1908, and Walther Müller, who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.
A breathing gas is a mixture of gaseous chemical elements and compounds used for respiration. Air is the most common, and only natural, breathing gas. But other mixtures of gases, or pure oxygen, are also used in breathing equipment and enclosed habitats such as scuba equipment, surface supplied diving equipment, recompression chambers, high-altitude mountaineering, high-flying aircraft, submarines, space suits, spacecraft, medical life support and first aid equipment, and anaesthetic machines.
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.
Ultra-high vacuum (UHV) is the vacuum regime characterised by pressures lower than about 100 nanopascals. UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately 40 km, so the gas is in free molecular flow, and gas molecules will collide with the chamber walls many times before colliding with each other. Almost all molecular interactions therefore take place on various surfaces in the chamber.
A hermetic seal is any type of sealing that makes a given object airtight. The term originally applied to airtight glass containers, but as technology advanced it applied to a larger category of materials, including rubber and plastics. Hermetic seals are essential to the correct and safe functionality of many electronic and healthcare products. Used technically, it is stated in conjunction with a specific test method and conditions of use.
Demining or mine clearance is the process of removing land mines from an area. In military operations, the object is to rapidly clear a path through a minefield, and this is often done with devices such as mine plows and blast waves. By contrast, the goal of humanitarian demining is to remove all of the landmines to a given depth and make the land safe for human use. Specially trained dogs are also used to narrow down the search and verify that an area is cleared. Mechanical devices such as flails and excavators are sometimes used to clear mines.
A residual gas analyzer (RGA) is a small and usually rugged mass spectrometer, typically designed for process control and contamination monitoring in vacuum systems. Utilizing quadrupole technology, there exists two implementations, utilizing either an open ion source (OIS) or a closed ion source (CIS). RGAs may be found in high vacuum applications such as research chambers, surface science setups, accelerators, scanning microscopes, etc. RGAs are used in most cases to monitor the quality of the vacuum and easily detect minute traces of impurities in the low-pressure gas environment. These impurities can be measured down to Torr levels, possessing sub-ppm detectability in the absence of background interferences.
A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the gas diffusion process of uranium enrichment plants. It typically uses a vacuum chamber in which a sealed container filled with helium is placed. Helium leaks out of the container, and the rate of the leak is detected by a mass spectrometer.
The High Flux Isotope Reactor (HFIR) is a nuclear research reactor at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, United States. Operating at 85 MW, HFIR is one of the highest flux reactor-based sources of neutrons for condensed matter physics research in the United States, and it has one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into the fundamental properties of condensed matter. HFIR has about 600 users each year for both scattering and in-core research.
A leak is a way for fluid to escape a container or fluid-containing system, such as a tank or a ship's hull, through which the contents of the container can escape or outside matter can enter the container. Leaks are usually unintended and therefore undesired. The word leak usually refers to a gradual loss; a sudden loss is usually called a spill.
A hydrogen sensor is a gas detector that detects the presence of hydrogen. They contain micro-fabricated point-contact hydrogen sensors and are used to locate hydrogen leaks. They are considered low-cost, compact, durable, and easy to maintain as compared to conventional gas detecting instruments.
Dissolved gas analysis (DGA) is an examination of electrical transformer oil contaminants. Insulating materials within electrical equipment liberate gases as they slowly break down over time. The composition and distribution of these dissolved gases are indicators of the effects of deterioration, such as pyrolysis or partial discharge, and the rate of gas generation indicates the severity. DGA is beneficial to a preventive maintenance program.
A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.
The thermal conductivity detector (TCD), also known as a katharometer, is a bulk property detector and a chemical specific detector commonly used in gas chromatography. This detector senses changes in the thermal conductivity of the column eluent and compares it to a reference flow of carrier gas. Since most compounds have a thermal conductivity much less than that of the common carrier gases of helium or hydrogen, when an analyte elutes from the column the effluent thermal conductivity is reduced, and a detectable signal is produced.
A tracer-gas leak testing method is a nondestructive testing method that detects gas leaks. A variety of methods with different sensitivities exist. Tracer-gas leak testing is used in the petrochemical industry, the automotive industry, and in the manufacture of semiconductors, among other uses.
Hydrogen safety covers the safe production, handling and use of hydrogen, particularly hydrogen gas fuel and liquid hydrogen.
A hydrogen-cooled turbo generator is a turbo generator with gaseous hydrogen as a coolant. Hydrogen-cooled turbo generators are designed to provide a low-drag atmosphere and cooling for single-shaft and combined-cycle applications in combination with steam turbines. Because of the high thermal conductivity and other favorable properties of hydrogen gas, this is the most common type in its field today.
Weld purging is the act of removing, from the vicinity of the joint; oxygen, water vapour and any other gases or vapours that might oxidize or contaminate a welding joint as it is being welded and immediately after welding.
{{cite web}}
: CS1 maint: archived copy as title (link)