Hyperpolarized carbon-13 MRI

Last updated
Hyperpolarized carbon-13 MRI
Purposeimaging technique for probing perfusion and metabolism

Hyperpolarized carbon-13 MRI is a functional medical imaging technique for probing perfusion and metabolism using injected substrates.

Contents

It is enabled by techniques for hyperpolarization of carbon-13-containing molecules using dynamic nuclear polarization and rapid dissolution to create an injectable solution. [1] [2] Following the injection of a hyperpolarized substrate, metabolic activity can be mapped based on enzymatic conversion of the injected molecule. In contrast with other metabolic imaging methods such as positron emission tomography, hyperpolarized carbon-13 MRI provides chemical as well as spatial information, allowing this technique to be used to probe the activity of specific metabolic pathways. This has led to new ways of imaging disease. For example, metabolic conversion of hyperpolarized pyruvate into lactate is increasingly being used to image cancerous tissues via the Warburg effect. [3] [4] [5]

Hyperpolarization

While hyperpolarization of inorganic small molecules (like 3He and 129Xe) is generally achieved using spin-exchange optical pumping (SEOP), compounds useful for metabolic imaging (such as 13C or 15N) are typically hyperpolarized using dynamic nuclear polarization (DNP). DNP can be performed at operating temperatures of 1.1-1.2 K, and high magnetic fields (~4T). [6] The compounds are then thawed and dissolved to yield a room temperature solution containing hyperpolarized nuclei which can be injected.

Dissolution and injection

Hyperpolarized samples of 13C pyruvic acid are typically dissolved in some form of aqueous solution containing various detergents and buffering reagents. For example, in a study detecting tumor response to etoposide treatment, the sample was dissolved in 40 mM HEPES, 94 mM NaOH, 30 mM NaCl, and 50 mg/L EDTA. [3]

Preclinical models

Hyperpolarized carbon-13 MRI is currently being developed as a potentially cost effective diagnostic and treatment progress tool in various cancers, including prostate cancer. Other potential uses include neuro-oncological applications such as the monitoring of real-time in vivo metabolic events. [7]

Clinical trials

The majority of clinical studies utilizing 13C hyperpolarization are currently studying pyruvate metabolism in prostate cancer, testing reproducibility of the imaging data, as well as feasibility of acquiring time. [8]

Imaging methods

Sequence of NMR spectra from a dynamic hyperpolarized carbon-13 MR imaging experiment in a rat model. This data set shows the evolution of magnetization in a single voxel in the rat's kidney. A strong peak from the hyperpolarized pyruvate injected in the experiment is evident, along with smaller peaks corresponding to the metabolites lactate, alanine and bicarbonate. In vivo hyperpolarized carbon 13 MRI spectra.png
Sequence of NMR spectra from a dynamic hyperpolarized carbon-13 MR imaging experiment in a rat model. This data set shows the evolution of magnetization in a single voxel in the rat's kidney. A strong peak from the hyperpolarized pyruvate injected in the experiment is evident, along with smaller peaks corresponding to the metabolites lactate, alanine and bicarbonate.

Spectroscopic imaging

Spectroscopic imaging techniques enable chemical information to be extracted from hyperpolarized carbon-13 MRI experiments. The distinct chemical shift associated with each metabolite can be exploited to probe the exchange of magnetization between pools corresponding to each of the metabolites.

Metabolite-selective excitation

Using techniques for simultaneous spatial and spectral selective excitation, RF pulses can be designed to perturb metabolites individually. [9] [10] This enables the encoding of metabolite-selective images without the need for spectroscopic imaging. This technique also allows different flip angles to be applied to each metabolite, [11] [12] which enables pulse sequences to be designed that make optimal use of the limited polarization available for imaging. [13] [14]

Dynamic imaging models

In contrast with conventional MRI, hyperpolarized experiments are inherently dynamic as images must be acquired as the injected substrate spreads through the body and is metabolized. This necessitates dynamical system modelling and estimation for quantifying metabolic reaction rates. A number of approaches exist for modeling the evolution of magnetization within a single voxel.

pyruvatelactatealanine
T1~46.9-65 s dependent on B0 field strength [15]
T2 (HCC Tumor)0.9 ± 0.2 s [16] 1.2 ± 0.1 s [16]
T2 (Healthy Liver)0.52 ± 0.03 s [16] 0.38 ± 0.05 s [16]

Two-species model with unidirectional flux

The simplest model of metabolic flux assumes unidirectional conversion of the injected substrate S to a product P. The rate of conversion is assumed to be governed by the reaction rate constant

.

 

 

 

 

(1)

Exchange of magnetization between the two species can then be modeled using the linear ordinary differential equation

where denotes the rate at which the transverse magnetization decays to thermal equilibrium polarization, for the product species P.

Two-species model with bidirectional flux

The unidirectional flux model can be extended to account for bidirectional metabolic flux with forward rate and backward rate

 

 

 

 

(2)

The differential equation describing the magnetization exchange is then

Effect of radio-frequency excitation

Repeated radio-frequency (RF) excitation of the sample causes additional decay of the magnetization vector. For constant flip angle sequences, this effect can be approximated using a larger effective rate of decay computed as

where is the flip angle and is the repetition time. [17] Time-varying flip angle sequences can also be used, but require that the dynamics be modeled as a hybrid system with discrete jumps in the system state. [18]

Metabolism mapping

The goal of many hyperpolarized carbon-13 MRI experiments is to map the activity of a particular metabolic pathway. Methods of quantifying the metabolic rate from dynamic image data include temporally integrating the metabolic curves, computing the definite integral referred to in pharmacokinetics as the area under the curve (AUC), and taking the ratio of integrals as a proxy for rate constants of interest.

Area-under-the-curve ratio

Comparing the definite integral under the substrate and product metabolite curves has been proposed as an alternative to model-based parameter estimates as a method of quantifying metabolic activity. Under specific assumptions, the ratio

of area under the product curve AUC(P) to the area under the substrate curve AUC(S) is proportional to the forward metabolic rate . [19]

Rate parameter mapping

When the assumptions under which this ratio is proportional to are not met, or there is significant noise in the collected data, it is desirable to compute estimates of model parameters directly. When noise is independent and identically distributed and Gaussian, parameters can be fit using non-linear least squares estimation. Otherwise (for example if magnitude images with Rician-distributed noise are used), parameters can be estimated by maximum likelihood estimation. The spatial distribution of metabolic rates can be visualized by estimating metabolic rates corresponding to the time series from each voxel, and plotting a heat map of the estimated rates.

See also

Related Research Articles

Magnetic resonance imaging Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from CT and PET scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

SQUID type of magnetometer

A SQUID is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops containing Josephson junctions.

Hyperpolarization is the nuclear spin polarization of a material in a magnetic field far beyond thermal equilibrium conditions determined by the Boltzmann distribution. It can be applied to gases such as 129Xe and 3He, and small molecules where the polarization levels can be enhanced by a factor of 104-105 above thermal equilibrium levels. Hyperpolarized noble gases are typically used in magnetic resonance imaging (MRI) of the lungs. Hyperpolarized small molecules are typically used for in vivo metabolic imaging. For example, a hyperpolarized metabolite can be injected into animals or patients and the metabolic conversion can be tracked in real-time. Other applications include determining the function of the neutron spin-structures by scattering polarized electrons from a very polarized target (3He), surface interaction studies, and neutron polarizing experiments.

Diffusion MRI Method of utilizing water in magnetic resonance imaging

Diffusion-weighted magnetic resonance imaging is the use of specific MRI sequences as well as software that generates images from the resulting data that uses the diffusion of water molecules to generate contrast in MR images. It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not random, but reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white matter tractography in the brain.

Spin–spin relaxation

In physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time. It is the time it takes for the magnetic resonance signal to irreversibly decay to 37% (1/e) of its initial value after its generation by tipping the longitudinal magnetization towards the magnetic transverse plane. Hence the relation

During nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the component of the total nuclear magnetic moment vector which is parallel to the constant magnetic field relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.

In vivo magnetic resonance spectroscopy (MRS) is a specialized technique associated with magnetic resonance imaging (MRI).

Magnetic resonance spectroscopic imaging (MRSI) is a noninvasive imaging method that provides spectroscopic information in addition to the image that is generated by MRI alone.

Nuclear magnetic resonance Spectroscopic technique relying on the energy of electrons

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI).

Physics of magnetic resonance imaging

The physics of magnetic resonance imaging (MRI) concerns fundamental physical considerations of MRI techniques and technological aspects of MRI devices. MRI is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among others. Contrast agents may be injected intravenously or into a joint to enhance the image and facilitate diagnosis. Unlike CT and X-ray, MRI uses no ionizing radiation and is, therefore, a safe procedure suitable for diagnosis in children and repeated runs. Patients with specific non-ferromagnetic metal implants, cochlear implants, and cardiac pacemakers nowadays may also have an MRI in spite of effects of the strong magnetic fields. This does not apply on older devices, details for medical professionals are provided by the device's manufacturer.

Spin–lattice relaxation in the rotating frame is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value of zero, under the influence of a radio frequency (RF) field in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–lattice relaxation time constant in the rotating frame, T. It is named in contrast to T1, the spin-lattice relaxation time.

Intravoxel incoherent motion

Intravoxel incoherent motion (IVIM) imaging is a concept and a method initially introduced and developed by Le Bihan et al. to quantitatively assess all the microscopic translational motions that could contribute to the signal acquired with diffusion MRI. In this model, biological tissue contains two distinct environments: molecular diffusion of water in the tissue, and microcirculation of blood in the capillary network (perfusion). The concept introduced by D. Le Bihan is that water flowing in capillaries mimics a random walk (Fig.1), as long as the assumption that all directions are represented in the capillaries is satisfied.

Harmonic phase (HARP) algorithm is a medical image analysis technique capable of extracting and processing motion information from tagged magnetic resonance image (MRI) sequences. It was initially developed by N. F. Osman and J. L. Prince at the Image Analysis and Communications Laboratory at Johns Hopkins University. The method uses spectral peaks in the Fourier domain of tagged MRI, calculating the phase images of their inverse Fourier transforms, which are called harmonic phase (HARP) images. The motion of material points through time is then tracked, under the assumption that the HARP value of a fixed material point is time-invariant. The method is fast and accurate, and has been accepted as one of the most popular tagged MRI analysis methods in medical image processing.

Resting state fMRI

Resting state fMRI is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed. A number of resting-state conditions are identified in the brain, one of which is the default mode network. These resting brain state conditions are observed through changes in blood flow in the brain which creates what is referred to as a blood-oxygen-level dependent (BOLD) signal that can be measured using fMRI.

Functional magnetic resonance spectroscopy of the brain (fMRS) uses magnetic resonance imaging (MRI) to study brain metabolism during brain activation. The data generated by fMRS usually shows spectra of resonances, instead of a brain image, as with MRI. The area under peaks in the spectrum represents relative concentrations of metabolites.

Sodium MRI

Sodium MRI is a specialised magnetic resonance imaging technique that uses strong magnetic fields, magnetic field gradients, and radio waves to generate images of the distribution of sodium in the body, as opposed to more common forms of MRI that utilise protons present in water (1H-MRI). Like the proton, sodium is naturally abundant in the body, so can be imaged directly without the need for contrast agents or hyperpolarization. Furthermore, sodium ions play a role in important biological processes via their contribution to concentration and electrochemical gradients across cellular membranes, making it of interest as an imaging target in health and disease.

Phase contrast magnetic resonance imaging

Phase contrast magnetic resonance imaging (PC-MRI) is a specific type of magnetic resonance imaging used primarily to determine flow velocities. PC-MRI can be considered a method of Magnetic Resonance Velocimetry. It also provides a method of magnetic resonance angiography. Since modern PC-MRI is typically time-resolved, it provides a means of 4D imaging.

Adiabatic radio frequency (RF) pulses are used in magnetic resonance imaging (MRI) to achieve excitation that is insensitive to spatial inhomogeneities in the excitation field or off-resonances in the sampled object.

Synthetic MRI is a simulation method in Magnetic Resonance Imaging (MRI), for generating contrast weighted images based on measurement of tissue properties. The synthetic (simulated) images are generated after an MR study, from parametric maps of tissue properties. It is thereby possible to generate several contrast weightings from the same acquisition. This is different from conventional MRI, where the signal acquired from the tissue is used to generate an image directly, often generating only one contrast weighting per acquisition. The synthetic images are similar in appearance to those normally acquired with an MRI scanner.

MRI sequence

An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance.

References

  1. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (September 2003). "Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR". Proceedings of the National Academy of Sciences of the United States of America. 100 (18): 10158–63. Bibcode:2003PNAS..10010158A. doi: 10.1073/pnas.1733835100 . PMC   193532 . PMID   12930897.
  2. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (September 2003). "Molecular imaging with endogenous substances". Proceedings of the National Academy of Sciences of the United States of America. 100 (18): 10435–9. Bibcode:2003PNAS..10010435G. doi: 10.1073/pnas.1733836100 . PMC   193579 . PMID   12930896.
  3. 1 2 Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (November 2007). "Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy". Nature Medicine. 13 (11): 1382–7. doi:10.1038/nm1650. PMID   17965722. S2CID   11576068.
  4. Sriram R, Kurhanewicz J, Vigneron DB (2014). "Hyperpolarized Carbon-13 MRI and MRS Studies". EMagRes. 3: 1–14. doi:10.1002/9780470034590.emrstm1253. ISBN   9780470034590.
  5. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA (August 2013). "Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate". Science Translational Medicine. 5 (198): 198ra108. doi:10.1126/scitranslmed.3006070. PMC   4201045 . PMID   23946197.
  6. Jóhannesson H, Macholl S, Ardenkjaer-Larsen JH (April 2009). "Dynamic Nuclear Polarization of [1-13C]pyruvic acid at 4.6 tesla". Journal of Magnetic Resonance. 197 (2): 167–75. Bibcode:2009JMagR.197..167J. doi:10.1016/j.jmr.2008.12.016. PMID   19162518.
  7. Miloushev VZ, Keshari KR, Holodny AI (February 2016). "Hyperpolarization MRI: Preclinical Models and Potential Applications in Neuroradiology". Topics in Magnetic Resonance Imaging. 25 (1): 31–7. doi:10.1097/RMR.0000000000000076. PMC   4968075 . PMID   26848559.
  8. "Clinical Trials".
  9. Lupo JM, Chen AP, Zierhut ML, Bok RA, Cunningham CH, Kurhanewicz J, Vigneron DB, Nelson SJ (February 2010). "Analysis of hyperpolarized dynamic 13C lactate imaging in a transgenic mouse model of prostate cancer". Magnetic Resonance Imaging. 28 (2): 153–62. doi:10.1016/j.mri.2009.07.007. PMC   3075841 . PMID   19695815.
  10. Cunningham CH, Chen AP, Lustig M, Hargreaves BA, Lupo J, Xu D, Kurhanewicz J, Hurd RE, Pauly JM, Nelson SJ, Vigneron DB (July 2008). "Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products". Journal of Magnetic Resonance. 193 (1): 139–46. Bibcode:2008JMagR.193..139C. doi:10.1016/j.jmr.2008.03.012. PMC   3051833 . PMID   18424203.
  11. Larson PE, Kerr AB, Chen AP, Lustig MS, Zierhut ML, Hu S, Cunningham CH, Pauly JM, Kurhanewicz J, Vigneron DB (September 2008). "Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging". Journal of Magnetic Resonance. 194 (1): 121–7. Bibcode:2008JMagR.194..121L. doi:10.1016/j.jmr.2008.06.010. PMC   3739981 . PMID   18619875.
  12. Marco-Rius I, Cao P, von Morze C, Merritt M, Moreno KX, Chang GY, Ohliger MA, Pearce D, Kurhanewicz J, Larson PE, Vigneron DB (April 2017). "13 C-MR metabolism studies". Magnetic Resonance in Medicine. 77 (4): 1419–1428. doi:10.1002/mrm.26226. PMC   5040611 . PMID   27017966.
  13. Xing Y, Reed GD, Pauly JM, Kerr AB, Larson PE (September 2013). "Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates". Journal of Magnetic Resonance. 234: 75–81. Bibcode:2013JMagR.234...75X. doi:10.1016/j.jmr.2013.06.003. PMC   3765634 . PMID   23845910.
  14. Maidens J, Gordon JW, Arcak M, Larson PE (November 2016). "Optimizing Flip Angles for Metabolic Rate Estimation in Hyperpolarized Carbon-13 MRI". IEEE Transactions on Medical Imaging. 35 (11): 2403–2412. doi:10.1109/TMI.2016.2574240. PMC   5134417 . PMID   27249825.
  15. Chattergoon N, Martínez-Santiesteban F, Handler WB, Ardenkjaer-Larsen JH, Scholl TJ (January 2013). "Field dependence of T1 for hyperpolarized [1-13C]pyruvate". Contrast Media & Molecular Imaging. 8 (1): 57–62. doi: 10.1002/cmmi.1494 . PMID   23109393.
  16. 1 2 3 4 Yen YF, Le Roux P, Mayer D, King R, Spielman D, Tropp J, Butts Pauly K, Pfefferbaum A, Vasanawala S, Hurd R (May 2010). "T(2) relaxation times of (13)C metabolites in a rat hepatocellular carcinoma model measured in vivo using (13)C-MRS of hyperpolarized [1-(13)C]pyruvate". NMR in Biomedicine. 23 (4): 414–23. doi:10.1002/nbm.1481. PMC   2891253 . PMID   20175135.
  17. Søgaard LV, Schilling F, Janich MA, Menzel MI, Ardenkjaer-Larsen JH (May 2014). "In vivo measurement of apparent diffusion coefficients of hyperpolarized ¹³C-labeled metabolites". NMR in Biomedicine. 27 (5): 561–9. doi:10.1002/nbm.3093. PMID   24664927. S2CID   29659861.
  18. Bahrami N, Swisher CL, Von Morze C, Vigneron DB, Larson PE (February 2014). "Kinetic and perfusion modeling of hyperpolarized (13)C pyruvate and urea in cancer with arbitrary RF flip angles". Quantitative Imaging in Medicine and Surgery. 4 (1): 24–32. doi:10.3978/j.issn.2223-4292.2014.02.02. PMC   3947982 . PMID   24649432.
  19. Hill DK, Orton MR, Mariotti E, Boult JK, Panek R, Jafar M, Parkes HG, Jamin Y, Miniotis MF, Al-Saffar NM, Beloueche-Babari M, Robinson SP, Leach MO, Chung YL, Eykyn TR (2014). "Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data". PLOS ONE. 8 (9): e71996. Bibcode:2013PLoSO...871996H. doi: 10.1371/journal.pone.0071996 . PMC   3762840 . PMID   24023724.