INAH 3

Last updated
Interstitial nucleus of the anterior hypothalamus
Anatomical terms of neuroanatomy

INAH-3 is the short form for the third interstitial nucleus of the anterior hypothalamus, and is the sexually dimorphic nucleus of humans. The INAH-3 is significantly larger in males than in females regardless of age [1] and larger in heterosexual males than in homosexual males and heterosexual females. [2] Homologs of the INAH-3 have been found to play a direct role in sexual behavior in rhesus monkeys, [3] sheep, [4] rats, [5] mice, [6] and ferrets. [7]

Contents

Research

The term INAH (interstitial nuclei of the anterior hypothalamus), first proposed in 1989 by a group of the University of California at Los Angeles, refers to 4 previously undescribed cell groups of the preoptic-anterior hypothalamic area (PO-AHA) of the human brain, which is a structure that influences gonadotropin secretion, maternal behavior, and sexual behavior in several mammalian species. There are four nuclei in the PO-AHA (INAH1-4). One of these nuclei, INAH-3, was found to be 2.8 times larger in the male brain than in the female brain regardless of age. [8]

A study authored by Simon LeVay and published in the journal Science suggests that the region is an important biological substrate with regard to sexual orientation. This article reported the INAH-3 to be smaller on average in homosexual men than in heterosexual men, and in fact has approximately the same size in homosexual men as in heterosexual women. [9] [10] Further research has found that the INAH3 is smaller in volume in homosexual men than in heterosexual men because homosexual men have a higher neuronal packing density (the number of neurons per cubic millimeter) in the INAH3 than heterosexual men; there is no difference in the number or cross-sectional area of neurons in the INAH3 of homosexual versus heterosexual men. [11] [note 1] It has also been found that there is no effect of HIV infection on the size of INAH3, that is, HIV infection cannot account for the observed difference in INAH3 volume between homosexual and heterosexual men. [11]

LeVay noted three possibilities that could account for his findings: 1. The structural differences in INAH3 between homosexual and heterosexual males were present prenatally or in early life and aided in establishment of the men’s sexual orientation; 2. The differences appeared postnatally as a result of the men’s sexual feelings or behavior and; 3. Both the differences in INAH3 and sexual orientation are linked to some third confounding variable (such as a developmental event in prenatal or early life). LeVay found the first possibility most probable and noted that the second possibility was unlikely in light of various homologous studies in other species. [13] It has been suggested that the human INAH-3 is the homologue of the rat’s SDN-POA. [14] [15]

Other researchers have studied correlations between INAH-3 volume and other aspects of sexual identity. A study of transgender individuals by neuroanatomist Dick Swaab found male-to-female transgender people to have a size and number of neurons of INAH-3 closer to a normal female range, and that female-to-male transgender people have a size and number of INAH-3 neurons closer to a normal male range. This finding that the size of the INAH-3 more closely corresponded to the gender the subject identified with rather than their biological or chromosomal gender has since been repeated, but is still controversial due to potential confounds of hormone replacement therapy. [16] [17]

See also

Notes

  1. In their study, Byne et al. found that there was a trend for the INAH3 to be smaller in homosexual men than heterosexual men though the size difference did not quite reach statistical significance by the test that they employed. LeVay notes that Byne et al. used a two-tailed t-test, which is the appropriate test in cases where there is no prediction about the direction of a difference. However, LeVay explains that because his 1991 study had determined the INAH3 to be smaller in homosexual versus heterosexual men, using a one-tailed test would have been appropriate. In addition, a one-tailed test would have found a statistically significant difference in INAH3 size between homosexual and heterosexual men. [12]

Related Research Articles

<span class="mw-page-title-main">Biology and sexual orientation</span> Field of sexual orientation research

The relationship between biology and sexual orientation is a subject of on-going research. While scientists do not know the exact cause of sexual orientation, they theorize that it is caused by a complex interplay of genetic, hormonal, and environmental influences. However, evidence is weak for hypotheses that the post-natal social environment impacts sexual orientation, especially for males.

<span class="mw-page-title-main">Hypothalamus</span> Area of the brain below the thalamus

The hypothalamus is a small part of the vertebrate brain that contains a number of nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamus is located below the thalamus and is part of the limbic system. It forms the basal part of the diencephalon. All vertebrate brains contain a hypothalamus. In humans, it is about the size of an almond.

<span class="mw-page-title-main">Arcuate nucleus (hypothalamus)</span>

The arcuate nucleus of the hypothalamus (ARH), or ARC, is also known as the infundibular nucleus to distinguish it from the arcuate nucleus of the medulla oblongata in the brainstem. The arcuate nucleus is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes. The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs to other nuclei in the hypothalamus or inputs to areas outside this region of the brain. These neurons, generated from the ventral part of the periventricular epithelium during embryonic development, locate dorsally in the hypothalamus, becoming part of the ventromedial hypothalamic region. The function of the arcuate nucleus relies on its diversity of neurons, but its central role is involved in homeostasis. The arcuate nucleus provides many physiological roles involved in feeding, metabolism, fertility, and cardiovascular regulation.

<span class="mw-page-title-main">Stria terminalis</span> Band of fibres along the thalamus

The stria terminalis is a structure in the brain consisting of a band of fibers running along the lateral margin of the ventricular surface of the thalamus. Serving as a major output pathway of the amygdala, the stria terminalis runs from its centromedial division to the ventromedial nucleus of the hypothalamus.

<span class="mw-page-title-main">Ventromedial nucleus of the hypothalamus</span> Nucleus of the hypothalamus

The ventromedial nucleus of the hypothalamus is a nucleus of the hypothalamus. In 2007, Kurrasch et al. found that the ventromedial hypothalamus is a distinct morphological nucleus involved in terminating hunger, fear, thermoregulation, and sexual activity. This nuclear region is involved in the recognition of the feeling of fullness.

<span class="mw-page-title-main">Simon LeVay</span> British-American neuroscientist (born 1943)

Simon LeVay is a British-American neuroscientist.

<span class="mw-page-title-main">Septal area</span> Area in the lower, posterior part of the medial surface of the frontal lobe

The septal area, consisting of the lateral septum and medial septum, is an area in the lower, posterior part of the medial surface of the frontal lobe, and refers to the nearby septum pellucidum.

The sexually dimorphic nucleus (SDN) is an ovoid, densely packed cluster of large cells located in the medial preoptic area (POA) of the hypothalamus which is believed to be related to sexual behavior in animals. Thus far, for all species of mammals investigated, the SDN has been repeatedly found to be considerably larger in males than in females. In humans, the volume of the SDN has been found to be 2.2 times as large in males as in females and to contain 2.1 times as many cells. The human SDN is elongated in females and more spherical in males. No sex differences have been observed in the human SDN in either cell density or mean diameter of the cell nuclei. The volume and cell number of the human SDN considerably decreases with age, although the decrease in cell number is both sex and age-specific. In males, a substantial decrease in the cell number of the human SDN was observed between the age of 50–60 years. Cell death was more common in females than males, especially among those older than 70 years of age. The SDN cell number in females can drop to 10-15% of that found in early childhood.

<span class="mw-page-title-main">Anterior commissure</span> Bundle of nerve fibers connecting the two temporal lobes of the brain

The anterior commissure is a white matter tract connecting the two temporal lobes of the cerebral hemispheres across the midline, and placed in front of the columns of the fornix. In all but five species of mammal the great majority of fibers connecting the two hemispheres travel through the corpus callosum, which in humans and all non-monotremes is more than 10 times larger than the anterior commissure. Other routes of communication pass through the hippocampal commissure or, indirectly, via subcortical connections. Nevertheless, the anterior commissure is a significant pathway that can be clearly distinguished in the brains of all mammals.

Gender incongruence is the state of having a gender identity that does not correspond to one's sex assigned at birth. This is experienced by people who identify as transgender or transsexual, and often results in gender dysphoria. The causes of gender incongruence have been studied for decades.

<span class="mw-page-title-main">Preoptic area</span> Region of the anterior hypothalamus

The preoptic area is a region of the hypothalamus. MeSH classifies it as part of the anterior hypothalamus. TA lists four nuclei in this region,.

<span class="mw-page-title-main">Environment and sexual orientation</span> Field of sexual orientation research

The relationship between the environment and sexual orientation is a subject of research. In the study of sexual orientation, some researchers distinguish environmental influences from hormonal influences, while other researchers include biological influences such as prenatal hormones as part of environmental influences.

<span class="mw-page-title-main">Neuroscience and sexual orientation</span> Mechanisms of sexual orientation development in humans

Sexual orientation is an enduring pattern of romantic or sexual attraction to persons of the opposite sex or gender, the same sex or gender, or to both sexes or more than one gender, or none of the aforementioned at all. The ultimate causes and mechanisms of sexual orientation development in humans remain unclear and many theories are speculative and controversial. However, advances in neuroscience explain and illustrate characteristics linked to sexual orientation. Studies have explored structural neural-correlates, functional and/or cognitive relationships, and developmental theories relating to sexual orientation in humans.

The anteroventral periventricular nucleus (AVPV) is a small cluster of cells located in the preoptic area of hypothalamus of the brain that is abundant in nuclear hormone receptors in a sexually dimorphic manner, strongly implicated, in rat models, as being neonatally imprinted and subsequently controlling sex-typical physiology and behaviors. This nucleus or cluster of cells is typically of bigger size in females than males, contrary to the sexually dimorphic nucleus (SDN) that is bigger in males.

Sleep onset is the transition from wakefulness into sleep. Sleep onset usually transits into non-rapid eye movement sleep but under certain circumstances it is possible to transit from wakefulness directly into rapid eye movement sleep.

<span class="mw-page-title-main">Prenatal hormones and sexual orientation</span> Hormonal theory of sexuality

The hormonal theory of sexuality holds that, just as exposure to certain hormones plays a role in fetal sex differentiation, such exposure also influences the sexual orientation that emerges later in the individual. Prenatal hormones may be seen as the primary determinant of adult sexual orientation, or a co-factor.

<i>The Sexual Brain</i> 1993 book by Simon LeVay

The Sexual Brain is a 1993 book about brain mechanisms involved in sexual behavior and feelings, and related topics such as sexual orientation, by the neuroscientist Simon LeVay. The book was praised as a well-written work on science. However, some reviewers pointed out factual errors, and stated that LeVay failed to prove that homosexuality has a biological basis.

<span class="mw-page-title-main">Androstadienol</span> Chemical compound

Androstadienol, or androsta-5,16-dien-3β-ol, is a 16-androstene class endogenous steroid, pheromone, and chemical intermediate to several other pheromones that is found in the sweat of both men and women.

<span class="mw-page-title-main">Homosexual behavior in sheep</span> Behavior among sheep interpreted as homosexual

Homosexual behavior in sheep has been well documented and studied. The domestic sheep is the only species of mammal except for humans which exhibits exclusive homosexual behavior. "About 10% of rams (males) refuse to mate with ewes (females) but do readily mate with other rams." Thirty percent of all rams demonstrate at least some homosexual behavior. One report on sheep found that 8% of rams exhibited homosexual preferences—that is, even when given a choice, they chose male over female partners. This documented homosexual preference has garnered much discussion. Such rams prefer to court and mount other rams only, even in the presence of estrous ewes. Moreover, around 18–22% of rams are bisexual.

References

  1. Allen LS; Hines M; Shryne JE; Gorski RA (1989). "Two sexually dimorphic cell groups in the human brain". J Neurosci. 9 (2): 497–506. doi: 10.1523/JNEUROSCI.09-02-00497.1989 . PMC   6569815 . PMID   2918374.
  2. LeVay, S (Aug 30, 1991). "A difference in hypothalamic structure between heterosexual and homosexual men". Science. 253 (5023): 1034–7. Bibcode:1991Sci...253.1034L. doi:10.1126/science.1887219. PMID   1887219.
  3. Slimp JC; Hart BL; Goy RW (Feb 17, 1978). "Heterosexual, autosexual and social behavior of adult male rhesus monkeys with medial preoptic-anterior hypothalamic lesions". Brain Res. 142 (1): 105–22. doi:10.1016/0006-8993(78)90180-4. PMID   414825.
  4. Roselli C; Larkin k; Resko J; Stellflug J; Stormshak F (2004). "Volume of a Sexually Dimorphic Nucleus in the Ovine Medial Preoptic Area/Anterior Hypothalamus Varies with Sexual Partner Preference". Endocrinology. 145 (2): 478–483. doi: 10.1210/en.2003-1098 . PMID   14525915.
  5. Balthazart J, Ball G (2007). "Topography in the preoptic region: Differential regulation of appetitive and consummatory male sexual behaviors". Frontiers in Neuroendocrinology. 28 (4): 161–178. doi:10.1016/j.yfrne.2007.05.003. PMC   2100381 . PMID   17624413.
  6. Wei, Yi-Chao; Wang, Shao-Ran; Jiao, Zhuo-Lei; Zhang, Wen; Lin, Jun-Kai; Li, Xing-Yu; Li, Shuai-Shuai; Zhang, Xin; Xu, Xiao-Hong (2018-01-18). "Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender". Nature Communications. 9 (1): 279. doi:10.1038/s41467-017-02648-0. ISSN   2041-1723. PMC   5773506 . PMID   29348568.
  7. Alekseyenko, Olga V.; Waters, Patricia; Zhou, Huiquan; Baum, Michael J. (2006-11-21). "Bilateral damage to the sexually dimorphic medial preoptic area/anterior hypothalamus of male ferrets causes a female-typical preference for and a hypothalamic Fos response to male body odors". Physiology & Behavior. 90 (2–3): 438–449. doi:10.1016/j.physbeh.2006.10.005. PMC   2265004 . PMID   17118411.
  8. Allen, L.S.; Hines, M.; Shryne, J.E.; Gorski, R.A. (Feb 1989). "Two sexually dimorphic cell groups in the human brain". The Journal of Neuroscience. 9 (2): 497–506. doi: 10.1523/JNEUROSCI.09-02-00497.1989 . PMC   6569815 . PMID   2918374.
  9. LeVay, S (Aug 30, 1991). "A difference in hypothalamic structure between heterosexual and homosexual men". Science. 253 (5023): 1034–7. Bibcode:1991Sci...253.1034L. doi:10.1126/science.1887219. PMID   1887219. S2CID   1674111.
  10. "Central Nervous System Dimorphisms Related to Reproductive Behaviors" Dale Purves ed., Neuroscience, 2:ed (2001) Online https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=neurosci.section.2127
  11. 1 2 Byne, William; Tobet, Stuart; Mattiace, Linda A.; Lasco, Mitchell S.; Kemether, Eileen; Edgar, Mark A.; Morgello, Susan; Buchsbaum, Monte S.; Jones, Liesl B. (2001-09-01). "The Interstitial Nuclei of the Human Anterior Hypothalamus: An Investigation of Variation with Sex, Sexual Orientation, and HIV Status". Hormones and Behavior. 40 (2): 86–92. doi:10.1006/hbeh.2001.1680. PMID   11534967. S2CID   3175414.
  12. Simon LeVay (2011). Gay, Straight, and the Reason Why: The Science of Sexual Orientation. Oxford University Press. p.  199. ISBN   978-0-19-973767-3.
  13. LeVay, S.; Hamer, D.H. (May 1994). "Evidence for a biological influence in male homosexuality". Scientific American. 270 (5): 44–9. Bibcode:1994SciAm.270e..44L. doi:10.1038/scientificamerican0594-44. PMID   8197444.
  14. Simon LeVay (2011). Gay, Straight, and the Reason Why: The Science of Sexual Orientation. Oxford University Press. p.  195. ISBN   978-0-19-973767-3.
  15. Koutcherov, Y.; Paxinos, G.; Mai, J.K. (Jul 20, 2007). "Organization of the human medial preoptic nucleus". The Journal of Comparative Neurology. 503 (3): 392–406. doi:10.1002/cne.21355. PMID   17503490. S2CID   22767149.
  16. Garcia-Falgueras, A.; Swaab, D.F. (Dec 2008). "A sex difference in the hypothalamic uncinate nucleus: relationship to gender identity". Brain: A Journal of Neurology. 131 (Pt 12): 3132–46. doi: 10.1093/brain/awn276 . PMID   18980961.
  17. Kay Brown (2010), "the Incredible Shrinking Brain"