Icosahedral pyramid | ||
---|---|---|
Schlegel diagram | ||
Type | Polyhedral pyramid | |
Schläfli symbol | ( ) ∨ {3,5} | |
Cells | 21 | 1 {3,5} 20 ( ) ∨ {3} |
Faces | 50 | 20+30 {3} |
Edges | 12+30 | |
Vertices | 13 | |
Dual | Dodecahedral pyramid | |
Symmetry group | H3, [5,3,1], order 120 | |
Properties | convex, regular-cells, Blind polytope |
The icosahedral pyramid is a four-dimensional convex polytope, bounded by one icosahedron as its base and by 20 triangular pyramid cells which meet at its apex. Since an icosahedron's circumradius is less than its edge length, [1] the tetrahedral pyramids can be made with regular faces.
Having all regular cells, it is a Blind polytope. Two copies can be augmented to make an icosahedral bipyramid which is also a Blind Polytope.
The regular 600-cell has icosahedral pyramids around every vertex.
The dual to the icosahedral pyramid is the dodecahedral pyramid, seen as a dodecahedral base, and 12 regular pentagonal pyramids meeting at an apex.
Seen in a configuration matrix, all incidence counts between elements are shown. [2]
k-faces | fk | f0 | f1 | f2 | f3 | k-verfs | ||||
---|---|---|---|---|---|---|---|---|---|---|
( ) | f0 | 1 | * | 12 | 0 | 30 | 0 | 20 | 0 | {3,5} |
( ) | * | 12 | 1 | 5 | 5 | 5 | 5 | 1 | {5}∨( ) | |
( )∨( ) | f1 | 1 | 1 | 12 | * | 5 | 0 | 5 | 0 | {5} |
{ } | 0 | 2 | * | 30 | 1 | 2 | 2 | 1 | { }∨( ) | |
{ }∨( ) | f2 | 1 | 2 | 2 | 1 | 30 | * | 2 | 0 | { } |
{3} | 0 | 3 | 0 | 3 | * | 20 | 1 | 1 | ( )∨( ) | |
{3}∨( ) | f3 | 1 | 3 | 3 | 3 | 3 | 1 | 20 | * | ( ) |
{3,5} | 0 | 12 | 0 | 30 | 0 | 20 | * | 1 | ( ) |
In geometry, the regular icosahedron is a convex polyhedron that can be constructed from pentagonal antiprism by attaching two pentagonal pyramids with regular faces to each of its pentagonal faces, or by putting points onto the cube. The resulting polyhedron has 20 equilateral triangles as its faces, 30 edges, and 12 vertices. It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron.
In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi) triangular faces and twelve (dodeca) pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon. As such, it is one of the Archimedean solids and more particularly, a quasiregular polyhedron.
In geometry, a Kepler–Poinsot polyhedron is any of four regular star polyhedra.
In geometry, an octahedron is a polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Regular octahedra occur in nature as crystal structures. Many types of irregular octahedra also exist, including both convex and non-convex shapes.
In geometry, a polyhedral compound is a figure that is composed of several polyhedra sharing a common centre. They are the three-dimensional analogs of polygonal compounds such as the hexagram.
In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. Intuitively, it may be regarded as footballs that are typically patterned with white hexagons and black pentagons. It can be found in the application of geodesic dome structures such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It is an example of an Archimedean solid, as well as a Goldberg polyhedron.
In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges.
In geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices.
In geometry, the great dodecahedron is one of four Kepler–Poinsot polyhedrons. It is composed of 12 pentagonal faces, intersecting each other making a pentagrammic path, with five pentagons meeting at each vertex.
In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {5⁄2,3}. It is one of four nonconvex regular polyhedra.
In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,5⁄2} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.
In geometry, the icosahedral honeycomb is one of four compact, regular, space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {3,5,3}, there are three icosahedra around each edge, and 12 icosahedra around each vertex, in a regular dodecahedral vertex figure.
In geometry, a truncated 120-cell is a uniform 4-polytope formed as the truncation of the regular 120-cell.
A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity.
In 4-dimensional geometry, the cubic pyramid is bounded by one cube on the base and 6 square pyramid cells which meet at the apex. Since a cube has a circumradius divided by edge length less than one, the square pyramids can be made with regular faces by computing the appropriate height.
In 4-dimensional geometry, the octahedral pyramid is bounded by one octahedron on the base and 8 triangular pyramid cells which meet at the apex. Since an octahedron has a circumradius divided by edge length less than one, the triangular pyramids can be made with regular faces by computing the appropriate height.
In the geometry of hyperbolic 3-space, the dodecahedral-icosahedral honeycomb is a uniform honeycomb, constructed from dodecahedron, icosahedron, and icosidodecahedron cells, in a rhombicosidodecahedron vertex figure.
In geometry, a Blind polytope is a convex polytope composed of regular polytope facets. The category was named after the German couple Gerd and Roswitha Blind, who described them in a series of papers beginning in 1979. It generalizes the set of semiregular polyhedra and Johnson solids to higher dimensions.
In 4-dimensional geometry, the tetrahedral bipyramid is the direct sum of a tetrahedron and a segment, {3,3} + { }. Each face of a central tetrahedron is attached with two tetrahedra, creating 8 tetrahedral cells, 16 triangular faces, 14 edges, and 6 vertices. A tetrahedral bipyramid can be seen as two tetrahedral pyramids augmented together at their base.
In 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, {3,5} + { }. Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 vertices. An icosahedral bipyramid can be seen as two icosahedral pyramids augmented together at their bases.