Ihara zeta function

Last updated

In mathematics, the Ihara zeta function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta function, and is used to relate closed walks to the spectrum of the adjacency matrix. The Ihara zeta function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book Trees that Ihara's original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice in 1985. As observed by Sunada, a regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis. [1]

Contents

Definition

The Ihara zeta function is defined as the analytic continuation of the infinite product

where L(p) is the length of . The product in the definition is taken over all prime closed geodesics of the graph , where geodesics which differ by a cyclic rotation are considered equal. A closed geodesic on (known in graph theory as a "reduced closed walk"; it is not a graph geodesic) is a finite sequence of vertices such that

The integer is the length . The closed geodesic is prime if it cannot be obtained by repeating a closed geodesic times, for an integer .

This graph-theoretic formulation is due to Sunada.

Ihara's formula

Ihara (and Sunada in the graph-theoretic setting) showed that for regular graphs the zeta function is a rational function. If is a -regular graph with adjacency matrix then [2]

where is the circuit rank of . If is connected and has vertices, .

The Ihara zeta-function is in fact always the reciprocal of a graph polynomial:

where is Ki-ichiro Hashimoto's edge adjacency operator. Hyman Bass gave a determinant formula involving the adjacency operator.

Applications

The Ihara zeta function plays an important role in the study of free groups, spectral graph theory, and dynamical systems, especially symbolic dynamics, where the Ihara zeta function is an example of a Ruelle zeta function. [3]

Related Research Articles

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In number theory, the local zeta functionZ(Vs) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

In the mathematical field of spectral graph theory, a Ramanujan graph is a regular graph whose spectral gap is almost as large as possible. Such graphs are excellent spectral expanders. As Murty's survey paper notes, Ramanujan graphs "fuse diverse branches of pure mathematics, namely, number theory, representation theory, and algebraic geometry". These graphs are indirectly named after Srinivasa Ramanujan; their name comes from the Ramanujan–Petersson conjecture, which was used in a construction of some of these graphs.

In mathematics, the Selberg trace formula, introduced by Selberg (1956), is an expression for the character of the unitary representation of a Lie group G on the space L2(Γ\G) of square-integrable functions, where Γ is a cofinite discrete group. The character is given by the trace of certain functions on G.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, the Artin–Mazur zeta function, named after Michael Artin and Barry Mazur, is a function that is used for studying the iterated functions that occur in dynamical systems and fractals.

In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type.

In mathematics, the Selberg class is an axiomatic definition of a class of L-functions. The members of the class are Dirichlet series which obey four axioms that seem to capture the essential properties satisfied by most functions that are commonly called L-functions or zeta functions. Although the exact nature of the class is conjectural, the hope is that the definition of the class will lead to a classification of its contents and an elucidation of its properties, including insight into their relationship to automorphic forms and the Riemann hypothesis. The class was defined by Atle Selberg in, who preferred not to use the word "axiom" that later authors have employed.

In mathematics, the explicit formulae for L-functions are relations between sums over the complex number zeroes of an L-function and sums over prime powers, introduced by Riemann (1859) for the Riemann zeta function. Such explicit formulae have been applied also to questions on bounding the discriminant of an algebraic number field, and the conductor of a number field.

The Selberg zeta-function was introduced by Atle Selberg (1956). It is analogous to the famous Riemann zeta function

In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve, is a compact Riemann surface of genus with the highest possible order of the conformal automorphism group in this genus, namely of order 48. The full automorphism group is the semi-direct product of order 96. An affine model for the Bolza surface can be obtained as the locus of the equation

In mathematics, Reidemeister torsion is a topological invariant of manifolds introduced by Kurt Reidemeister for 3-manifolds and generalized to higher dimensions by Wolfgang Franz (1935) and Georges de Rham (1936). Analytic torsion is an invariant of Riemannian manifolds defined by Daniel B. Ray and Isadore M. Singer as an analytic analogue of Reidemeister torsion. Jeff Cheeger and Werner Müller (1978) proved Ray and Singer's conjecture that Reidemeister torsion and analytic torsion are the same for compact Riemannian manifolds.

<span class="mw-page-title-main">Toshikazu Sunada</span> Japanese mathematician (born 1948)

Toshikazu Sunada is a Japanese mathematician and author of many books and essays on mathematics and mathematical sciences. He is professor emeritus of both Meiji University and Tohoku University. He is also distinguished professor of emeritus at Meiji in recognition of achievement over the course of an academic career. Before he joined Meiji University in 2003, he was professor of mathematics at Nagoya University (1988–1991), at the University of Tokyo (1991–1993), and at Tohoku University (1993–2003). Sunada was involved in the creation of the School of Interdisciplinary Mathematical Sciences at Meiji University and is its first dean (2013–2017). Since 2019, he is President of Mathematics Education Society of Japan.

In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.

Yasutaka Ihara is a Japanese mathematician and professor emeritus at the Research Institute for Mathematical Sciences. His work in number theory includes Ihara's lemma and the Ihara zeta function.

References

  1. Terras (1999) p. 678
  2. Terras (1999) p. 677
  3. Terras (2010) p. 29