Infantile cerebral and cerebellar atrophy with postnatal progressive microcephaly | |
---|---|
Specialty | Medical genetics |
Prevention | None |
Frequency | Higher among Jewish families in Caucasus, Israel |
Deaths | - |
Infantile cerebral and cerebellar atrophy with postnatal progressive microcephaly is a rare hereditary autosomal recessive malformation syndrome of the central nervous system characterized by profound motor delays and intellectual disabilities, progressive microcephaly, hypertonia, spasticity, clonus and epilepsy. MRI findings include severe cerebellar and cerebral deterioration (atrophy) and impaired myelination. [1] [2] [3] [4] [5] This condition is an example of consequences from the Founder effect, especially that of Jewish populations. [6] [7]
It has been described in 5 infants from 4 Israeli families of ethnic Caucasus Jewish descent. The genetic cause was found to be a homozygous mutation of the MED17 gene, located in chromosome 11, this mutation is called L371P. [8]
In vitro functional expression assays of the L371P mutation showed that it results in a functionally inactive MED17 protein. [8]
Lissencephaly is a set of rare brain disorders whereby the whole or parts of the surface of the brain appear smooth. It is caused by defective neuronal migration during the 12th to 24th weeks of gestation resulting in a lack of development of brain folds (gyri) and grooves (sulci). It is a form of cephalic disorder. Terms such as agyria and pachygyria are used to describe the appearance of the surface of the brain.
Microcephaly is a medical condition involving a smaller-than-normal head. Microcephaly may be present at birth or it may develop in the first few years of life. Brain development is often affected; people with this disorder often have an intellectual disability, poor motor function, poor speech, abnormal facial features, seizures and dwarfism.
Spinocerebellar ataxia (SCA) is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a neurological condition in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder. Currently, research is being conducted at Universities, such as the University of Minnesota, to elucidate many of the unknown characteristics of the disease.
Congenital muscular dystrophies are autosomal recessively-inherited muscle diseases. They are a group of heterogeneous disorders characterized by muscle weakness which is present at birth and the different changes on muscle biopsy that ranges from myopathic to overtly dystrophic due to the age at which the biopsy takes place.
Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves. FLD, along with Brown–Vialetto–Van Laere syndrome (BVVL), are the two forms of infantile progressive bulbar palsy, a type of progressive bulbar palsy in children.
Ohtahara syndrome (OS), also known as Early Infantile Developmental & Epileptic Encephalopathy (EIDEE) is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures within the first few months of life, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe intellectual disabilities. No single cause has been identified, although in many cases structural brain damage is present.
Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown; however, NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is related to late-infantile Batten disease and LINCL, and is under the umbrella of neuronal ceroid lipofuscinosis.
Marinesco–Sjögren syndrome (MSS), sometimes spelled Marinescu–Sjögren syndrome, is a rare autosomal recessive disorder.
X-linked spinal muscular atrophy type 2, also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in UBA1 gene and is passed in an X-linked recessive manner by carrier mothers to affected sons.
Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare neurodegenerative disorders caused by genetic mutations and characterised by progressive atrophy of various parts of the brain such as the cerebellum or brainstem. Where known, these disorders are inherited in an autosomal recessive fashion. There is no known cure for PCH.
Mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) – also known as mental retardation, X-linked, syndromic, Najm type (MRXSNA); X-linked intellectual deficit, Najm type; intellectual developmental disorder, X-linked, syndromic, Najm type; X-linked intellectual disability–microcephaly–pontocerebellar hypoplasia syndrome; and by variations of these terms – is a rare X-linked dominant genetic disorder of infants characterised by intellectual disability and pontocerebellar hypoplasia. It usually affects females; many males die before birth or not long after.
Barakat-Perenthaler syndrome is a rare neurodevelopmental genetic disorder, presenting with a severe epileptic encephalopathy, developmental delay, Intellectual disability, progressive microcephaly and visual disturbance. It is listed by the standard reference, Online Mendelian Inheritance in Man (OMIM) as #618744. and classified as EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 83; EIEE83. It was first described in 2019 by Dr. Stefan Barakat and his team at the Erasmus University Medical Center in Rotterdam in the journal Acta Neuropathologica; the most recent reviews were published in Epilepsy Currents. and Trends in Endocrinology and Metabolism
Infantile cerebellar retinal degeneration is a rare hereditary neurological disorder which primarily affects the eyes and the brain.
Autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCADN) is a rare progressive genetic disorder that primarily affects the nervous system and is characterized by sensorineural hearing loss, narcolepsy with cataplexy, and dementia later in life. People with this disorder usually start showing symptoms when they are in their early-mid adulthoods. It is a type of autosomal dominant cerebellar ataxia.
Gustavson syndrome, also known as Severe X-linked intellectual disability, Gustavson type, is a rare genetic disorder characterized by severe intellectual disabilities, microcephaly, developmental delay, optic atrophy-induced severe vision impairment/loss, severe hearing loss, spasticity, epilepsy, hypomobility of major joints, facial dysmorphisms, and premature death. Some other frequent symptoms include severe postnatal growth retardation, infantile apnea, brain atrophy, dilation of the fourth cerebral ventricle, recurrent upper respiratory tract infections, and a small fontanelle. This disorder was first discovered in 1993, by Gustavson et al., when they described 7 male children from a 2-generation family, these children had the symptoms mentioned above, and they came to the conclusion that this case was part of a novel X-linked recessive syndrome. No new cases have been reported since then (1993).
CAPOS syndrome is a rare genetic neurological disorder which is characterized by abnormalities of the feet, eyes and brain which affect their normal function. These symptoms occur episodically when a fever-related infection is present within the body. The name is an acronym for "cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss".
Severe intellectual disability-progressive spastic diplegia syndrome is a rare novel genetic disorder characterized by severe intellectual disabilities, ataxia, craniofacial dysmorphisms, and muscle spasticity. It is a type of autosomal dominant syndromic intellectual disability.
Keratosis follicularis-dwarfism-cerebral atrophy syndrome is a rare, presumably X-linked recessive genetic disorder characterized by keratosis follicularis, severe congenital proportionate dwarfism, and brain atrophy. Other less common findings include microcephaly, intellectual disability, alopecia, epilepsy, and inguinal hernias. It has only been described in 6 males from a 2-generation Mexican family.
Salt and pepper developmental regression syndrome, also known as Amish infantile epileptic syndrome or GM3 deficiency syndrome, is a rare autosomal recessive progressive neurological disorder characterized by developmental delay, severe intellectual disability, seizures, and skin pigmentation irregularities. The clinical symptoms of this condition start manifesting soon after birth, during the newborn/neo-natal stage of life.
Spastic tetraplegia, thin corpus callosum, and progressive microcephaly is a rare autosomal recessive disease caused by mutations in the SLC1A4 gene encoding the ASCT1 protein. The ASCT1 protein is primarily found in astrocytes in the brain where its main role is to import L-serine, a non-essential amino acid.
{{cite web}}
: CS1 maint: numeric names: authors list (link)