Inositol pentakisphosphate

Last updated
myo-Inositol 1,3,4,5,6-pentakisphosphate
Myo-Inositol 1,3,4,5,6-pentakisphosphate.png
Identifiers
3D model (JSmol)
7685231
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C6H17O21P5/c7-1-2(23-28(8,9)10)4(25-30(14,15)16)6(27-32(20,21)22)5(26-31(17,18)19)3(1)24-29(11,12)13/h1-7H,(H2,8,9,10)(H2,11,12,13)(H2,14,15,16)(H2,17,18,19)(H2,20,21,22)/p-10/t1-,2+,3-,4-,5+,6+ Yes check.svgY
    Key: CTPQAXVNYGZUAJ-KXXVROSKSA-D Yes check.svgY
  • InChI=1/C6H17O21P5/c7-1-2(23-28(8,9)10)4(25-30(14,15)16)6(27-32(20,21)22)5(26-31(17,18)19)3(1)24-29(11,12)13/h1-7H,(H2,8,9,10)(H2,11,12,13)(H2,14,15,16)(H2,17,18,19)(H2,20,21,22)/p-10/t1-,2+,3-,4-,5+,6+
    Key: CTPQAXVNYGZUAJ-JSZKNSOJBF
  • O=P([O-])([O-])O[C@@H]1[C@@H](OP([O-])([O-])=O)[C@H](OP([O-])([O-])=O)[C@H](O)[C@H](OP([O-])([O-])=O)[C@H]1OP([O-])([O-])=O
Properties
C6H17O21P5
Molar mass 580.050 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Inositol pentakisphosphate (abbreviated IP5) is a molecule derived from inositol tetrakisphosphate by adding a phosphate group with the help of Inositol-polyphosphate multikinase (IPMK). It is believed to be one of the many second messengers in the inositol phosphate family. It "is implicated in a wide array of biological and pathophysiological responses, including tumorigenesis, invasion and metastasis, therefore specific inhibitors of the kinase may prove useful in cancer therapy." [2]

IP5 also plays a role in defense signaling in plants. It potentiates the interaction of the plant hormone JA-Ile by its receptor. [3] [4]

Related Research Articles

Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by phospholipase C (PLC). Together with diacylglycerol (DAG), IP3 is a second messenger molecule used in signal transduction in biological cells. While DAG stays inside the membrane, IP3 is soluble and diffuses through the cell, where it binds to its receptor, which is a calcium channel located in the endoplasmic reticulum. When IP3 binds its receptor, calcium is released into the cytosol, thereby activating various calcium regulated intracellular signals.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Inositol</span> Carbocyclic sugar

Inositol, or more precisely myo-inositol, is a carbocyclic sugar that is abundant in the brain and other mammalian tissues; it mediates cell signal transduction in response to a variety of hormones, neurotransmitters, and growth factors and participates in osmoregulation.

<span class="mw-page-title-main">Inositol trisphosphate receptor</span> Class of transport proteins

Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites. There is strong evidence suggesting that the InsP3R plays an important role in the conversion of external stimuli to intracellular Ca2+ signals characterized by complex patterns relative to both space and time, such as Ca2+ waves and oscillations.

<span class="mw-page-title-main">Phytic acid</span> Chemical compound

Phytic acid is a six-fold dihydrogenphosphate ester of inositol, also called inositol hexakisphosphate (IP6) or inositol polyphosphate. At physiological pH, the phosphates are partially ionized, resulting in the phytate anion.

<span class="mw-page-title-main">Inositol phosphate</span>

Inositol phosphates are a group of mono- to hexaphosphorylated inositols. Each form of inositol phosphate is distinguished by the number and position of the phosphate group on the inositol ring.

<span class="mw-page-title-main">ITPKB</span> Protein-coding gene in the species Homo sapiens

Inositol-trisphosphate 3-kinase B is an enzyme that in humans is encoded by the ITPKB gene.

<span class="mw-page-title-main">Inositol-phosphate phosphatase</span> Class of enzymes

The enzyme Inositol phosphate-phosphatase is of the phosphodiesterase family of enzymes. It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. Inhibition of inositol monophosphatase may be key in the action of lithium in treating bipolar disorder, specifically manic depression.

In enzymology, a diphosphoinositol-pentakisphosphate kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an inositol-pentakisphosphate 2-kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Inositol-trisphosphate 3-kinase</span> Class of enzymes

Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.

<span class="mw-page-title-main">INPP4A</span> Protein-coding gene in the species Homo sapiens

Type I inositol-3,4-bisphosphate 4-phosphatase is an enzyme that in humans is encoded by the INPP4A gene.

<span class="mw-page-title-main">IHPK2</span> Protein-coding gene in the species Homo sapiens

Inositol hexakisphosphate kinase 2 is an enzyme that in humans is encoded by the IP6K2 gene.

<span class="mw-page-title-main">INPP5B</span> Protein-coding gene in the species Homo sapiens

Type II inositol-1,4,5-trisphosphate 5-phosphatase is an enzyme that in humans is encoded by the INPP5B gene.

<span class="mw-page-title-main">MINPP1</span> Protein-coding gene in the species Homo sapiens

Multiple inositol polyphosphate phosphatase 1 is an enzyme that in humans is encoded by the MINPP1 gene.

<span class="mw-page-title-main">INPP1</span> Protein-coding gene in the species Homo sapiens

Inositol polyphosphate 1-phosphatase is an enzyme that, in humans, is encoded by the INPP1 gene. INPP1 encodes the enzyme inositol polyphosphate-1-phosphatase, one of the enzymes involved in phosphatidylinositol signaling pathways. This enzyme removes the phosphate group at position 1 of the inositol ring from the polyphosphates inositol 1,4-bisphosphate and inositol 1,3,4-trisphophosphate.

<span class="mw-page-title-main">IHPK1</span> Protein-coding gene in the species Homo sapiens

Inositol hexakisphosphate kinase 1 is an enzyme that in humans is encoded by the IP6K1 gene.

<span class="mw-page-title-main">Diglyceride</span> Type of fat derived from glycerol and two fatty acids

A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as surfactants and are commonly used as emulsifiers in processed foods. DAG-enriched oil has been investigated extensively as a fat substitute due to its ability to suppress the accumulation of body fat; with total annual sales of approximately USD 200 million in Japan since its introduction in the late 1990s till 2009.

Inositol-polyphosphate multikinase is an enzyme with systematic name ATP:1D-myo-inositol-1,4,5-trisphosphate 6-phosphotransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Inositol polyphosphate kinase</span> Enzyme family

Inositol polyphosphate kinase (IPK) is a family of enzymes that have a similar 3-dimensional structure. All members of the family catalyze the transfer of phosphate groups from ATP to various inositol phosphates. Members of the family include inositol-polyphosphate multikinases, inositol-hexakisphosphate kinases, inositol-trisphosphate 3-kinases, and inositol-pentakisphosphate 2-kinase, which is more distantly related to the others

References

  1. Sigma Aldrich
  2. Piccolo, E.; Vignati, S.; Maffucci, T.; Innominato, P. F.; Riley, A. M.; Potter, B. V.; Pandolfi, P. P.; Broggini, M.; et al. (2004). "Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway". Oncogene . 23 (9): 1754–1765. doi:10.1038/sj.onc.1207296. PMID   14755253.
  3. Sheard, L. B.; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R.; Kobayashi, Yuichi; Hsu, Fong-Fu; et al. (2010). "Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor". Nature . 468 (7322): 400–405. Bibcode:2010Natur.468..400S. doi:10.1038/nature09430. PMC   2988090 . PMID   20927106.
  4. Mosblech, A.; Thurow, Corinna; Gatz, Christiane; Feussner, Ivo; Heilmann, Ingo (2010). "Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana". The Plant Journal . 65 (6): 949–957. doi: 10.1111/j.1365-313X.2011.04480.x . PMID   21205029.