Inozemtsev model

Last updated

In quantum statistical physics, the Inozemtsev model is a spin chain, defined on a one-dimensional, periodic lattice. Unlike the prototypical Heisenberg spin chain, which only includes interactions between neighboring sites of the lattice, the Inozemtsev model has long-range interactions, that is, interactions between any pair of sites, regardless of the distance between them.

Contents

It was introduced in 1990 by Vladimir Inozemtsev as a model which interpolates between the Heisenberg XXX model and the Haldane–Shastry model. [1] Like those spin chains, the Inozemtsev model is exactly solvable.

Formulation

For a chain with spin 1/2 sites, the quantum phase space is described by the tensor product Hilbert space . The (elliptic) Inozemtsev model is given by the (unnormalised) Hamiltonian [1] [2] where the pair potential is the Weierstrass elliptic function, and denotes the Pauli vector at the th site (acting nontrivially on the th copy of in ). The periods of the Weierstrass elliptic function are the length of the chain, to ensure periodic boundary conditions, together with an imaginary period that sets the interaction range and is traditionally parameterized as where . The truly long-range Haldane-Shastry chain is obtained when the imaginary period is removed (, so ) while, upon renormalisation, the Heisenberg spin chain is recovered in the limit (). The infinite-length limit instead gives hyperbolic potential , which is why the resulting spin chain is sometimes called the hyperbolic (as opposed to elliptic) Inozemtsev chain.

Exact solution

The system has been exactly solved by means of an 'extended' Bethe ansatz method. The model was solved by Inozemtsev first in the infinite lattice size limit, [3] , and later for finite size. [4] [5] [2]

AdS/CFT correspondence

The model can be used to understand certain aspects of the AdS/CFT correspondence proposed by Maldacena. Specifically, integrability techniques have turned out to be useful for an 'integrable' instance of the correspondence. On the string theory side of the correspondence, one has a type IIB superstring on , the product of five-dimensional Anti-de Sitter space with the five-dimensional sphere. On the conformal field theory (CFT) side one has N = 4 supersymmetric Yang–Mills theory (N = 4 SYM) on four-dimensional space.

Spin chains have turned out to be useful for computing specific anomalous dimensions on the CFT side, which can then provide evidence for the correspondence if matching observables are computed on the string theory side. In the so-called 'planar limit' or 'large ' limit of N = 4 SYM, in which the number of colors , which parametrizes the gauge group , is sent to infinity, determining one-loop anomalous dimensions becomes equivalent to the problem of diagonalizing an appropriate spin chain. The Inozemtsev model is one such model which has been useful in determining these quantities. [6] While the match only holds up to three loops in perturbation theory, and its appearance might thus have been somewhat of a coincidence, this development has brought the Inozemtsev chain under the attention of a wider audience of researchers.

See also

Related Research Articles

<span class="mw-page-title-main">Pauli exclusion principle</span> Quantum mechanics rule: identical fermions cannot occupy the same quantum state simultaneously

In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins cannot simultaneously occupy the same quantum state within a system that obeys the laws of quantum mechanics. This principle was formulated by Austrian physicist Wolfgang Pauli in 1925 for electrons, and later extended to all fermions with his spin–statistics theorem of 1940.

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

<span class="mw-page-title-main">Hubbard model</span> Approximate model used to describe the transition between conducting and insulating systems

The Hubbard model is an approximate model used to describe the transition between conducting and insulating systems. It is particularly useful in solid-state physics. The model is named for John Hubbard.

In statistical physics, the classical Heisenberg model, developed by Werner Heisenberg, is the case of the n-vector model, one of the models used to model ferromagnetism and other phenomena.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

In physics, the Bethe ansatz is an ansatz for finding the exact wavefunctions of certain quantum many-body models, most commonly for one-dimensional lattice models. It was first used by Hans Bethe in 1931 to find the exact eigenvalues and eigenvectors of the one-dimensional antiferromagnetic isotropic (XXX) Heisenberg model.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

<span class="mw-page-title-main">Bethe–Salpeter equation</span> Equation for two-body bound states

The Bethe–Salpeter equation is an integral equation, the solution of which describes the structure of a relativistic two-body (particles) bound state in a covariant formalism quantum field theory (QFT). The equation was first published in 1950 at the end of a paper by Yoichiro Nambu, but without derivation.

A spin model is a mathematical model used in physics primarily to explain magnetism. Spin models may either be classical or quantum mechanical in nature. Spin models have been studied in quantum field theory as examples of integrable models. Spin models are also used in quantum information theory and computability theory in theoretical computer science. The theory of spin models is a far reaching and unifying topic that cuts across many fields.

The Majumdar–Ghosh model is a one-dimensional quantum Heisenberg spin model in which the nearest-neighbour antiferromagnetic exchange interaction is twice as strong as the next-nearest-neighbour interaction. It is a special case of the more general - model, with . The model is named after Indian physicists Chanchal Kumar Majumdar and Dipan Ghosh.

In quantum physics, the quantum inverse scattering method (QISM), similar to the closely related algebraic Bethe ansatz, is a method for solving integrable models in 1+1 dimensions, introduced by Leon Takhtajan and L. D. Faddeev in 1979.

In condensed matter physics, an AKLT model, also known as an Affleck-Kennedy-Lieb-Tasaki model is an extension of the one-dimensional quantum Heisenberg spin model. The proposal and exact solution of this model by Ian Affleck, Elliott H. Lieb, Tom Kennedy and Hal Tasaki provided crucial insight into the physics of the spin-1 Heisenberg chain. It has also served as a useful example for such concepts as valence bond solid order, symmetry-protected topological order and matrix product state wavefunctions.

N = 4 supersymmetric Yang–Mills (SYM) theory is a relativistic conformally invariant Lagrangian gauge theory describing the interactions of fermions via gauge field exchanges. In D=4 spacetime dimensions, N=4 is the maximal number of supersymmetries or supersymmetry charges.

The Kundu equation is a general form of integrable system that is gauge-equivalent to the mixed nonlinear Schrödinger equation. It was proposed by Anjan Kundu as

In physics, the Gaudin model, sometimes known as the quantum Gaudin model, is a model, or a large class of models, in statistical mechanics first described in its simplest case by Michel Gaudin. They are exactly solvable models, and are also examples of quantum spin chains.

A spin chain is a type of model in statistical physics. Spin chains were originally formulated to model magnetic systems, which typically consist of particles with magnetic spin located at fixed sites on a lattice. A prototypical example is the quantum Heisenberg model. Interactions between the sites are modelled by operators which act on two different sites, often neighboring sites.

In quantum statistical physics, the Haldane–Shastry model is a spin chain, defined on a one-dimensional, periodic lattice. Unlike the prototypical Heisenberg spin chain, which only includes interactions between neighboring sites of the lattice, the Haldane–Shastry model has long-range interactions, that is, interactions between any pair of sites, regardless of the distance between them.

<span class="mw-page-title-main">Germán Sierra</span> Spanish theoretical physicist, author, and academic

Germán Sierra is a Spanish theoretical physicist, author, and academic. He is Professor of Research at the Institute of Theoretical Physics Autonomous University of Madrid-Spanish National Research Council.

<span class="mw-page-title-main">Alexei Tsvelik</span> Theoretical physicist

Alexei Mikhaylovich Tsvelik is a theoretical condensed matter physicist working on strongly correlated electron systems. He is widely recognised for his pioneering contributions to the theory of low-dimensional systems, including applications of non-perturbative quantum field theory methods and the Bethe Ansatz.

References

  1. 1 2 Inozemtsev, V. I. (1 June 1990). "On the connection between the one-dimensionalS=1/2 Heisenberg chain and Haldane-Shastry model". Journal of Statistical Physics. 59 (5): 1143–1155. doi:10.1007/BF01334745. ISSN   1572-9613. S2CID   119547086 . Retrieved 18 July 2023.
  2. 1 2 Klabbers, R.; Lamers, J. (March 2022). "How Coordinate Bethe Ansatz Works for Inozemtsev Model". Communications in Mathematical Physics. 390 (2): 827–905. arXiv: 2009.14513 . doi:10.1007/s00220-021-04281-x. S2CID   222066782.
  3. Inozemtsev, V. I. (January 1992). "The extended Bethe ansatz for infinite $S=1/2$ quantum spin chains with non-nearest-neighbor interaction". Communications in Mathematical Physics. 148 (2): 359–376. doi:10.1007/BF02100866. ISSN   0010-3616. S2CID   121241619.
  4. Inozemtsev, V I (21 August 1995). "On the spectrum of S= 1/2 XXX Heisenberg chain with elliptic exchange". Journal of Physics A: Mathematical and General. 28 (16): L439–L445. arXiv: cond-mat/9504096 . doi:10.1088/0305-4470/28/16/004. S2CID   16731887.
  5. Inozemtsev, V.I. (2000). "Bethe-ansatz equations for quantum Heisenberg chains with elliptic exchange". Regular and Chaotic Dynamics. 5 (3): 243. doi:10.1070/RD2000v005n03ABEH000147.
  6. Serban, D; Staudacher, M (2 June 2004). "Planar N=4 gauge theory and the Inozemtsev long range spin chain". Journal of High Energy Physics. 2004 (6): 001. arXiv: hep-th/0401057 . doi:10.1088/1126-6708/2004/06/001. S2CID   14863437.