Instructional simulation

Last updated

An instructional simulation, also called an educational simulation, is a simulation of some type of reality (system or environment) but which also includes instructional elements that help a learner explore, navigate or obtain more information about that system or environment that cannot generally be acquired from mere experimentation. Instructional simulations are typically goal oriented and focus learners on specific facts, concepts, or applications of the system or environment. Today, most universities make lifelong learning possible by offering a virtual learning environment (VLE). Not only can users access learning at different times in their lives, but they can also immerse themselves in learning without physically moving to a learning facility, or interact face to face with an instructor in real time. Such VLEs vary widely in interactivity and scope. For example, there are virtual classes, virtual labs, virtual programs, virtual library, virtual training, etc. Researchers have classified VLE in 4 types:

Contents

History

Simulations of one form or another have been used since the early 1900s as a method for training or training. The United States Defense Modeling and Simulation Coordination Office [2] identifies three main types of simulation: live, virtual, and constructive. Live (live action) and virtual simulations are primarily used for training purposes, whereas a constructive simulation is used to view or predict outcomes like wargaming or stockmarket behavior. Each of these types is based on some reality and is intended to provide the user with a pseudo-experience without the danger, expense, or complexity of real life.

While simulations are used for learning and training purposes, noted authors, such as Clark Aldrich [3] and Andy Gibbons [4] (Model-Centered Instruction) suggest that simulations in and of themselves are not instructional. Rather, a simulation only becomes instructional when instructional elements are included that help expose the learner to key parts or concepts of the system or environment. For example, an F-16 simulator is not inherently instructional because it is primarily intended to replicate the F-16 cockpit behavior and the environments the aircraft operates within. The simulator may be used for training purposes, but it requires an instructor or some other external element to identify key learning aspects of the system to the learner.

In education, simulations have had their use under a number of different names. Ken Jones [5] in the 1980s defined simulations as interactions between people such as role-playing. Others suggest that experiential learning activities like those found in team training or ropes courses are also simulations because they replicate the human decision-making processes groups may display, albeit in a very different environment. These can be considered instructional simulations because the effective use of these simulation types include using instructional elements to help learners focus on key behaviors, concepts or principles.

With the ever decreasing cost of computing tools, virtual and constructive simulation are being used more and more. Simulation is used more and more in e-learning environments because of improved Web-authoring tools and an increasing demand for performance-based training. As a result, more non-technical personnel are involved designing simulation, a field dominated by engineers and computer scientists.

Instructional design models for simulations

Most traditional instructional design models have at least four components: [6]

ADDIE is an example of an Instructional Systems Design (ISD) model.

Effectiveness of pedagogy

When designing VLEs more functions need to be considered than in designing traditional learning modalities. The process of virtual learning consists of organizational, quality control, correctional and predictable procedures. For example, the effectiveness of the organization of student self-learning - called the ‘pedagogical and didactical function’ in VLEs, will depend on the following:

  1. Online content that satisfies the requirements of subject matter standards, while at the same time allows engages students ‘interest in the process of learning. For example, open ended inquiry-based approaches to learning allow students to have some room to pursue individual interests.
  2. Level of interactivity of learning environment, to increase motivation and hands-on opportunities for learners. Simulation and animation provide excellent multisensory learning environments.
  3. Time management tools for the efficient assimilation of new materials. For example, availability of timetables, schedule of synchronous consultations, embedded hyperlinks for the ready access of information, etc.
  4. Maximization of activities that focus on student critical thinking, and information literacy skills, needed for the 21st century, such as acquisition, processing and synthesis of information.
  5. Communication modalities between teacher and student, peer to peer and learner to experts. The role of the instructor is that of an organizer, while the student is an initiator of the learning process.

A widely used format for designing online learning environments is WebQuest. However, there are today on the market newer models for instruction that are more interactive and integrated, such as Project Page, MiniQuest, CuriculumQuest, DecisionQuest. Reference: Jakes, D. (2003). "Creating Virtual Workspaces: New Models for Developing Online Curriculum". teachForum: Breakthrough Technologies for 21st century Schools, Chicago, Illinois. April 29, 2003. Retrieved on 6/28/09: http://www.biopoint.com/ibr/techforum.htm

Since the 1990s, trends such as the performance technology movement, constructivism, Electronic Performance Support Systems, rapid prototyping, increasing use of Internet for distance education/distance learning, and knowledge management endeavors have influenced instructional design practices These changes are producing challenges to existing design models. According to Reigeluth (1996), the education and training field is in the midst of a paradigm shift from the Industrial Revolution to the Information Age, requiring a corresponding shift from standardization to customization of instructional design. Moreover, Gros et al. (1997), posit the inflexibility of traditional linear design processes, calling for a more iterative process, while Winn (1997) and Jonassen et al. criticize the positivist assumptions that learning situations are closed systems, imparting knowledge is the instructor's responsibility, and that human behavior is predictable. [7]

There are many alternative models that have been proposed as more conducive to the new Information Age paradigm, including new methods of instruction such as instructional gaming and simulations – Jonassen's promotion of hermeneutics, fuzzy logic and chaos theory as bases for ID, Hoffman's use of Reigeleuth's Elaboration Theory and hypermedia, Akilli & Cagiltay's FIDGE model, among others. [8]

Hermeneutics, fuzzy logic, and chaos theory

Hermeneutics emphasizes the importance of socio-historical context in mediating the meanings of individuals creating and decoding texts. Massively multiplayer online learning environments, for example, require new social processes that go well with social constructivist, hermeneutic philosophy and methods. Chaos theory looks for order in chaotic systems, looking for repeating patterns such as fractals. It is useful for non-linear, dynamic situations or for situations where a small change in initial conditions can produce great changes later. Finally, fuzzy logic is based on the idea that reality is rarely bivalent, but rather multivalent – in other words, there are many "in-between" values that need to be designed for. Therefore, instructional models should move away from deterministic approaches and design for more probabilistic ways of thinking. [9]

Elaboration theory (ET) and hypermedia

Key aspects of ET are:

Hoffman states that "the Web-like linking that characterizes hypermedia is more alike to the functioning of human cognition than is the traditional linear structure found in much educational programming", further asserting that "this kind of model could lead to the possibility of modularity and plasticity, which would bring along the ease to make changes in response to learner needs without changing the overall structure of the product and rapid development." [11]

FIDGE (Fuzzified Instructional Design Development of Game-Like Environments) model

This model consists of dynamic phases with fuzzy boundaries, through which instructional designers move non-linearly. [12] The main features are:

Virtual worlds in instructional simulation

A virtual world is an interactive 3-D environment where users are immersed in the environment. Users can manipulate the environment and interact with other users. Depending on the degree of immersion, users can begin playing a game, interact with other users, attend seminars, or complete course work for an online class. Online discussion groups and social networks such as Myspace and Facebook are already being used to supplement interaction within coursework (Baker 2009).

Second Life is a virtual world where users create avatars. An avatar is a virtual representation of the user to other users. These avatars then interact with any other user within the Second Life world. Avatars can purchase virtual land, own buildings, and travel, interact, conduct business, and even attend lectures by professors. Second Life is running 24 hours a day and is tied into the Internet, so there are always other avatars to interact with.

MMORPGs such as World of Warcraft and Star Wars Galaxies are video game based virtual environments. These game engines hold the potential for instructional simulation. Unlike Second Life, these are pre-designed games with their own set of objectives that need to be completed through a progression.

Uses in education

In education, virtual learning environments are simulated experiences which utilize the pedagogical strategies of instructional modeling and role playing for the teaching of new concepts. The environment in which the experiences are presented is a virtual one often accessed via a computer or other video projection interface. Immersive virtual environment headsets have been used with younger children and students with special needs. The advantages of using instructional simulators via VLEs include: students are motivated when they are able to use computers and other technology; VLEs allow for interaction, exploration, and experimentation with locations, objects, and environments that would otherwise be unavailable in the absence of the VLE; instructors can adapt programs and parameters of the virtual learning experience to meet individual learner needs; when multi-user virtual environments are used collaborative and cooperative learning is encouraged; VLEs relate to students the real-world relevance of their learning by extending concepts and skills to application in the simulated environment; and learning can occur in an emotionally and physically safe environment without detrimental consequence.

The use of instructional simulation with individuals with special needs is gaining more attention. Mitchell, Parsons, and Leonard (2007) created a "Virtual Café" program designed to teach social interaction skills to adolescents with autism spectrum disorder (ASD). The program provides feedback to guide, or scaffold, the user toward making appropriate social behavior decisions. Virtual learning environments are also beginning to be used to teach children with ASD how to respond in potentially dangerous situations such as crossing the street and evacuating a building on fire (Strickland, McAllister, Coles, and Osborne 2007). The instructional simulation provides a safe environment within which to practice appropriate response skills.

Distance learning is growing. The importance of a physical classroom is being reduced as the technology of distance learning develops (Sanders, 2006). Sanders (2006) present a warning that students may do well in distance learning environments, however they need to have engaging moments within the course. He also warns students to critically assess a new technology before adopting it as a learning tool. The virtual learning environment needs to simulate the learning process, using goals and objectives to measure the learners’ achievement. Sanders (2006) uses movies like Terminator 2: Judgment Day , The Matrix , and I, Robot as callbacks to allegorical warnings of potential mishaps of relying too much on technology. He presents possible ways to balance a distance course so that it can effectively simulate a learning environment.

Barney, Bishop, Adlong, and Bedgood (2009) studied the use of a 3D virtual laboratory as a tool to familiarize distance learning chemistry students with an actual chemistry laboratory. While it was not incorporated into the initial study, the researchers suggest including instructional scaffolding experiences to help alleviate students’ anxieties with applying mathematics and chemistry concepts in the actual laboratory setting (Barney, Bishop, Adlong, and Bedgood 2009). The virtual laboratory does not replace the real-world experience, rather it helps to enhance the student's schema of a chemistry laboratory and prepare them for performance expectations in the actual environment. Web-based virtual science laboratories are also used with elementary school students. In their study, Sun, Lin, and Yu (2008) found that students who used a web-based virtual science laboratory in conjunction with traditional teaching methods not only found the learning experience more enjoyable, they also performed better academically and received higher grades.

Baker (2009) suggests multi-user virtual environments or MUVEs have the potential to engage students. Second Life holds more of a purpose in interaction (Baker, 2009). Instructors can hold lectures; students can collaborate through chat in Second Life. When compared to a discussion board, Second Life is a viable alternative for distance learning students to develop group work skills. At Chesapeake High School in Baltimore County, Maryland, students explore the ecological environment surrounding Mount St. Helens via a 3D virtual learning environment (Curriculum Review 2009). Students navigate through the environment with a virtual unmanned vehicle and work collaboratively to solve ecological and environmental problems that are built into the program for instructional purposes. Engaging in the VLE provides many opportunities for application, data collection, and problem solving.

Uses in medicine

Sokolowski classifies medical simulations in 3 categories: 1. Simulators based on physical models, usually referred to as the Human Patient Simulator (HPS), of which several prototype exist for different purposes (CentraLine Man, Noelle and Pediasim mannequins); 2. Virtual Reality training simulators based on computers – i.e. LapVR Surgical Simulator, and Suture Tutor; 3. a hybrid model of the first two kinds combines a realistic 3D computerized representation of an organ system, for example, with the ability to interface with it through haptic devices.

The use of simulation-based learning in the medical field has many benefits, including patient safety, accelerating diagnostic and therapeutic procedures, unfulfilled demand for medical personnel, medical cost reduction and lowering of medical errors that amount to loss of life and associated costs. The use of current technologies allow for very high fidelity simulations. These include Immersive Virtual Environments (IVEs)- computer based 3D environments known as serious games, and other very highly immersive virtual environments, such as Cave Automatic Virtual environment (CAVE), in which the student sits in a projection room wearing goggles and gloves equipped with sensors. This haptic technology activates the sense of touch, allowing the trainee to interface with a simulated patient, as well as to receive visual and auditory feedbacks, making the simulated learning experience very realistic.

According to research, [13] the best instructional simulators, medical or otherwise, contain these elements:

Immersive Virtual Environments (IVEs) in medical education range from teaching simple skills (taking a patient's blood) to complex skills (internal surgery). Different medical care providers use simulations for different purposes: emergency medical technicians, medics involved in combat environments, nurses, doctors, surgeons and medical First Responders in. IVEs simulate the human body so as to provide the student or trainee with the opportunity to realistically practice and thus become proficient as to the particular technique to be taught. IVEs are commonly used when teaching patient examination, surgical procedures and assessment (individual and collaborative). Students are relieved to know that these simulations are practice and appreciate the opportunity to make mistakes now rather than later. The use of IVEs provides a controlled, safe environment for students to learn and so the anxiety factor is reduced. Students can discuss the symptoms more openly than they could with an actual patient. At the same time, however, students use all the protocol they would with a real patient. That means they introduce themselves, address the patients by name and respect their privacy.

The use of the simulation saves lives and money by reducing medical errors, training time, operating room time and the need to replace expensive equipment. Simulation users may practice on a variety of patients, each of which has a different case history, exhibits unique symptoms, and responds to user actions with appropriate physiological responses. As in real life, patient anatomy moves with the beating of the heart and the breathing of the lungs while tissues deform, bruise and bleed. The system generates a detailed evaluation after each session, enabling users and supervisors to measure the success of simulated procedures.

Barriers to instructional simulation in medicine

Simulations in medicine have been in use as early as the 16th century when the use of training mannequins helped to reduce the high maternal and infant mortality rates. Today they have evolved, to include IVEs, CAVE, robotic surgery, etc., but they are still relatively limited in their use by the health industry. Medicine is a profession that uses very advanced technical, high risk, as well as behavioral skills. However, unlike other areas with similar requirements (such as aviation), medicine has not totally embraced the use of simulations to assist with necessary medical training. The limited use of simulations for training in the medical field can be explained by several factors, including cost control, relatively limited modeling of the human body, lack of scientific evidence of effectiveness, and resistance to change by professional in the field. (Ziv, et al. 2003). A later study, conducted by Amalberti et al.(2005), points to 5 systemic structural barriers to the use of simulators to advance medical training. These are:

  1. Unlimited decision-making autonomy of individual medical staff; instead, teamwork and regulations should anticipate problems and processes across departments.
  2. Unlimited performance of individuals and of the system; instead, hours of work should be limited and shortage of staff addressed because excessive productivity-not competence, leads to medical errors.
  3. Focus on status of individual; instead, standards of excellence of equivalent actors should be the goal.
  4. Overprotection against personal liability; instead, more consideration should be given to "unintended consequences", and to system-level arbitration to optimize safety strategies.
  5. Overregulation and technical complexities in medicine; instead, simplification of regulations is needed. [14]

The existence of these barriers leads to a lower rate of patient safety, and prevent the health industry to come closer to the goal of "ultrasafe performance," already achieved by the civil aviation and the nuclear power industries [15]

Related Research Articles

Multimedia is a form of communication that combines different content forms such as text, audio, images, animations, or video into a single interactive presentation, in contrast to traditional mass media which features little to no interaction from users, such as printed material or audio recordings. Popular examples of multimedia include video podcasts, audio slideshows and animated videos.

Virtual reality Computer-simulated experience

Virtual reality (VR) is a simulated experience that can be similar to or completely different from the real world. Applications of virtual reality include entertainment, education and business. Other distinct types of VR-style technology include augmented reality and mixed reality, sometimes referred to as extended reality or XR.

Simulation Imitation of the operation of a real-world process or system over time

A simulation is the imitation of the operation of a real-world process or system over time. Simulations require the use of models; the model represents the key characteristics or behaviors of the selected system or process, whereas the simulation represents the evolution of the model over time. Often, computers are used to execute the simulation.

Educational games are games explicitly designed with educational purposes, or which have incidental or secondary educational value. All types of games may be used in an educational environment, however educational games are games that are designed to help people learn about certain subjects, expand concepts, reinforce development, understand a historical event or culture, or assist them in learning a skill as they play. Game types include board, card, and video games.

Mixed reality Merging of real and virtual worlds to produce new environments

Mixed reality (MR) is the merging of real and virtual worlds to produce new environments and visualizations, where physical and digital objects co-exist and interact in real time. Mixed reality does not exclusively take place in either the physical world or virtual world, but is a hybrid of augmented reality and virtual reality. To mark the difference: Augmented reality takes place in the physical world, with information or objects added virtually like an overlay; Virtual Reality immerses you in a fully virtual world without the intervention of the physical world.

Educational technology is the combined use of computer hardware, software, and educational theory and practice to facilitate learning. When referred to with its abbreviation, edtech, it is often referring to the industry of companies that create educational technology.

The term virtual patient is used to describe interactive computer simulations used in health care education to train students on clinical processes such as making diagnoses and therapeutic decisions. Virtual patients attempt to combine modern technologies and game-based learning to facilitate education, and complement real clinical training. The use of virtual patients is increasing in healthcare due to increased demands on healthcare professionals, education of healthcare trainees, and to provide learners with a safe practice environment. There are many different formats a virtual patient may take, but the overarching principle is that of interactivity. Virtual patients typically have mechanisms where information is parsed out in response to the learners, simulating how patients respond to different treatments. Interactivity is often included with questions, specific decision-making tasks, text-composition etc. and is non-sequential. Most systems provide quantitative and qualitative feedback. In some cases, virtual patients are not full simulations themselves, but are mainly based on paper-based cases; as they do not allow for physical examination, or an in-depth medical history of a real patient.

Computer-supported collaborative learning (CSCL) is a pedagogical approach wherein learning takes place via social interaction using a computer or through the Internet. This kind of learning is characterized by the sharing and construction of knowledge among participants using technology as their primary means of communication or as a common resource. CSCL can be implemented in online and classroom learning environments and can take place synchronously or asynchronously.

Immersion (virtual reality) Perception of being physically present in a non-physical world

Immersion into virtual reality (VR) is a perception of being physically present in a non-physical world. The perception is created by surrounding the user of the VR system in images, sound or other stimuli that provide an engrossing total environment.

E-learning theory describes the cognitive science principles of effective multimedia learning using electronic educational technology.

A serious game or applied game is a game designed for a primary purpose other than pure entertainment. The "serious" adjective is generally prepended to refer to video games used by industries like defense, education, scientific exploration, health care, emergency management, city planning, engineering, and politics. Serious games are a subgenre of serious storytelling, where storytelling is applied "outside the context of entertainment, where the narration progresses as a sequence of patterns impressive in quality ... and is part of a thoughtful progress". The idea shares aspects with simulation generally, including flight simulation and medical simulation, but explicitly emphasizes the added pedagogical value of fun and competition.

Medical simulation

Medical simulation, or more broadly, healthcare simulation, is a branch of simulation related to education and training in medical fields of various industries. Simulations can be held in the classroom, in situational environments, or in spaces built specifically for simulation practice. It can involve simulated human patients – artificial, human or a combination of the two, educational documents with detailed simulated animations, casualty assessment in homeland security and military situations, emergency response, and support virtual health functions with holographic simulation. In the past, its main purpose was to train medical professionals to reduce errors during surgery, prescription, crisis interventions, and general practice. Combined with methods in debriefing, it is now also used to train students in anatomy, physiology, and communication during their schooling.

Virtual worlds are playing an increasingly important role in education, especially in language learning. By March 2007 it was estimated that over 200 universities or academic institutions were involved in Second Life. Joe Miller, Linden Lab Vice President of Platform and Technology Development, claimed in 2009 that "Language learning is the most common education-based activity in Second Life". Many mainstream language institutes and private language schools are now using 3D virtual environments to support language learning.

Virtual worlds are 3D computer environments where each user is represented with a character – avatar. Traditionally, virtual worlds have been used for entertainment. However, starting from approximately 2004 both corporate world and academia started to recognize business value of virtual worlds for training and education, collaboration, and marketing. Development and maturity of most popular virtual world – Second Life – played a significant role in corporate movement towards virtual worlds for several reasons:

Adaptive learning, also known as adaptive teaching, is an educational method which uses computer algorithms as well as artificial intelligence to orchestrate the interaction with the learner and deliver customized resources and learning activities to address the unique needs of each learner. In professional learning contexts, individuals may "test out" of some training to ensure they engage with novel instruction. Computers adapt the presentation of educational material according to students' learning needs, as indicated by their responses to questions, tasks and experiences. The technology encompasses aspects derived from various fields of study including computer science, AI, psychometrics, education, psychology, and brain science.

A virtual learning environment (VLE) in educational technology is a web-based platform for the digital aspects of courses of study, usually within educational institutions. They present resources, activities, and interactions within a course structure and provide for the different stages of assessment. VLEs also usually report on participation and have some level of integration with other institutional systems. In North America, VLE's are often referred to as Learning Management Systems (LMS).

Virtual reality (VR) is a computer application which allows users to experience immersive, three dimensional visual and audio simulations. According to Pinho (2004), virtual reality is characterized by immersion in the 3D world, interaction with virtual objects, and involvement in exploring the virtual environment. The feasibility of the virtual reality in education has been debated due to several obstacles such as affordability of VR software and hardware. The psychological effects of virtual reality are also a negative consideration. However, recent technological progress has made VR more viable and promise new learning models and styles for students. These facets of virtual reality have found applications within the primary education sphere in enhancing student learning, increasing engagement, and creating new opportunities for addressing learning preferences.

Virtual reality applications Overview of the various applications that make use of virtual reality

Virtual reality applications are applications that make use of virtual reality (VR), an immersive sensory experience that digitally simulates a virtual environment. Applications have been developed in a variety of domains, such as education, architectural and urban design, digital marketing and activism, engineering and robotics, entertainment, virtual communities, fine arts, healthcare and clinical therapies, heritage and archaeology, occupational safety, social science and psychology.

Immersive learning is a learning method which students being immersed into a virtual dialogue, the feeling of presence is used as an evidence of getting immersed. The virtual dialogue can be created by two ways, the usage of virtual technics, and the narrative like reading a book. The motivations of using virtual reality (VR) for teaching contain: learning efficiency, time problems, physical inaccessibility, limits due to a dangerous situation and ethical problems.

Virtual reality is the creation of a three-dimensional, interactive environment. With this technology, users are able to move through this developed simulation, as if it is real.

References

  1. Ivanova, Angel Smrikarov, A (2004). "Some Approaches to Implementation of Virtual Learning Environments. International Conference on Computer Systems and Technologies - CompSysTech’2004. Retrieved on 6/26/09 http://ecet.ecs.uni-ruse.bg/cst04/Docs/sIV/425.pdf
  2. "The Department of Defense (DoD) Modeling and Simulation Coordination Office (M&S; CO)". Archived from the original on 2009-04-21. Retrieved 2009-04-22.
  3. Clark Aldrich
  4. Andy Gibbons
  5. Ken Jones
  6. Main, R. (1997). Integrating motivation into the design process. Educational Technology, 33(12), 38-39
  7. Akilli, G. (2007). Games and simulations: A new approach in education? In D. Gibson, C. Aldrich & M. Prensky (Eds.), Games and simulations in online learning: Research and development frameworks. Hershey PA: Information Science Pub. p. 9
  8. Akilli, 2007, 11
  9. Jonassen, D. et al.(1997). Certainty, determinism, and predictability in theories of instructional design: Lessons from science. Educational Technology, 37(1), 27-34.
  10. Wilson, B., & Cole, P. (1992). A critical review of elaboration theory. Educational Technology Research and Development, 40 (3), 63-79.
  11. Akilli, 2007
  12. Akilli, 13-15
  13. Issenberg SB et al. 2005 "Features and uses of high-fidelity medical simulations that lead to effective learning: A BEME systematic review." Medical Teacher 2005; 27, (1):10-28
  14. Sokolowski, J., and Banks, C.(2009) Principles of Modeling and Simulation. Hoboken, New Jersey: John Wiley and Sons; p. 209-245
  15. American Society of Clinical Oncology (2007) Journal of Oncology Practice, Vol 3, No 2 (March), 2007: pp. 66–70. Retrieved on 6/20/09: http://jop.ascopubs.org/cgi/content/full/3/2/66