Integrated Aqua-Vegeculture System

Last updated
iAVs schematic diagram Iavs schematic diagram.png
iAVs schematic diagram
Tomato transplants in a biofilter (composed of sand, bacteria and plants) shown being irrigated with aquacultural water for the first time. IAVs research day 1.png
Tomato transplants in a biofilter (composed of sand, bacteria and plants) shown being irrigated with aquacultural water for the first time.

The Integrated Aqua-Vegeculture System (iAVs), also informally known as Sandponics, [1] is a food production method that combines aquaculture and horticulture (olericulture). [2] It was developed in the 1980s by Mark McMurtry and colleagues at North Carolina State University including Doug Sanders, Paul V. Nelson and Merle Jensen.

Contents

In an iAVs, fish are raised in tanks, and their nutrient-rich water irrigates and fertilizes sand-based grow beds that support plant growth, act as biofilters, and deliver nutrients. As plants and micro-flora absorb these nutrients, they purify the water, which is recirculated back to the fish tanks.

The system often includes an aeration device, such as an aerating cascade, to oxygenate the water before it returns to the fish tanks. This multi-functional use of sand beds contributes to the relative simplicity of the iAVs design compared to other aquaponic systems. [3]

History

Development and early research

View of the research greenhouse approximately one week after transplant of tomato crop. The tanks are below the wood-grate walkway Iavs research week 1.png
View of the research greenhouse approximately one week after transplant of tomato crop. The tanks are below the wood-grate walkway

Aquaponic systems were in use among the Aztecs in Mexico ca. 1000AD, and such a system was replicated in the US in 1969, when research into those systems began, with researchers from the New Alchemy Institute in Massachusetts and from North Carolina State University leading the way. [4] Mark McMurtry, along with Doug Sanders, Paul V. Nelson, and Merle Jensen, pioneered the iAVs at North Carolina State University. The system was designed to address issues such as soil infertility, pollution, and water scarcity, [4] which McMurtry observed during his time in Africa. The initial research aimed to create a sustainable and efficient method for producing nutrient-rich food while conserving water.[ citation needed ]


Modification and commercialization

In the early 1990s, Tom and Paula Speraneo, owners of S & S AquaFarm in Missouri, adapted the iAVs design by replacing sand with gravel and using above-ground tanks for fish. This modified system, known as "Speraneo Systems," employed bell siphons to facilitate an ebb-and-flow irrigation cycle, popularizing what is commonly termed flood and drain aquaponics. In 2005, Joel Malcolm purchased the Speraneo’s information kit and adapted it for use in Australia. The Australian Broadcasting Corporation's Gardening TV program featured Malcolm's home-based system, leading to a renewed interest in the basic flood and drain system.

The introduction of gravel in aquaponics brought about several significant changes. It reduced mechanical filtration capability, decreased populations and activity of soil organisms, and lowered aeration in the media bacteria and plant root zone. Additionally, it diminished nutrient utilization and system stability, leading to reduced fish survival, feed rate, and growth. These changes also resulted in increased capital costs with lower fish and plant yields, as well as higher operating costs per unit of production. [5]

Horticultural subsystem

The upper surface of the plant/filter bed is prepared to a level grade and designed to accommodate the specific vegetable crops or species to be cultivated. Irrigation furrows are created between the rows of plants to promote the uniform distribution of irrigation water across the surface and through the volume of the filter bed. [3] The plants are grown in raised sections of the sand which ensures the crown of the plants are kept dry.[ citation needed ]

In the Integrated Aqua Vegeculture System (iAVs), plants are grown in a horticulture subsystem where their roots are embedded in sand. This sand acts as a filtration medium, allowing the plants to absorb the nutrient-rich effluent water from the aquaculture subsystem. The plants effectively filter out ammonia and its metabolites, which are toxic to the aquatic animals. After the water has passed through the horticulture subsystem, it is cleaned and oxygenated, making it suitable to return to the aquaculture vessels. It uses a method of intermittent irrigation, flooding the furrows of the beds every 2 hours, during the day, until the sand is saturated. There is no irrigation at night,[ citation needed ]

Terminology

Historically, aquaponics, which combines aquaculture (fish farming) and hydroponics (growing plants in water), was only seen as relating to these two practices, making current connections to traditional soil-based farming seem out of place. [6]

The Integrated Aqua-Vegeculture System (iAVs), developed by Dr. Mark McMurtry prior to the popularization of the term "aquaponics," represents a specialized methodology within the broader domain of aquaponics.

Hydroponics is traditionally understood as a soil-less cultivation method utilizing nutrient solutions, which can create confusion when discussing systems like iAVs that incorporate soil. This distinction emphasizes the unique methodology of iAVs as compared to other aquaponic systems, which generally do not utilize sand.

The ongoing dialogues surrounding the definitions of aquaponics and hydroponics highlight the necessity for standardized terminology in this field. Without clear definitions, the scientific advancement of aquaponics, including iAVs, may be impeded, as researchers and practitioners might struggle to communicate their findings and innovations effectively.

Additionally, this semantic challenge can influence public perception and the adoption of these systems, leading to potential confusion regarding the functionalities and requirements of various aquaponic setups. Establishing standardized terminology for describing aquaponic systems, including iAVs, will facilitate clearer communication, promote scientific progress, and enhance public understanding and support for these agricultural technologies. [5]

Related Research Articles

<span class="mw-page-title-main">Hydroponics</span> Growing plants without soil using nutrients in water

Hydroponics is a type of horticulture and a subset of hydroculture which involves growing plants, usually crops or medicinal plants, without soil, by using water-based mineral nutrient solutions in an artificial environment. Terrestrial or aquatic plants may grow freely with their roots exposed to the nutritious liquid or the roots may be mechanically supported by an inert medium such as perlite, gravel, or other substrates.

The following outline is provided as an overview of and topical guide to sustainable agriculture:

<span class="mw-page-title-main">Outline of organic gardening and farming</span> Overview of and topical guide to organic gardening and farming

The following outline is provided as an overview of and topical guide to organic gardening and farming:

<span class="mw-page-title-main">Aquaponics</span> System combining aquaculture with hydroponics in a symbiotic environment

Aquaponics is a food production system that couples aquaculture with hydroponics whereby the nutrient-rich aquaculture water is fed to hydroponically grown plants.

<span class="mw-page-title-main">Biofilter</span> Pollution control technique

Biofiltration is a pollution control technique using a bioreactor containing living material to capture and biologically degrade pollutants. Common uses include processing waste water, capturing harmful chemicals or silt from surface runoff, and microbiotic oxidation of contaminants in air. Industrial biofiltration can be classified as the process of utilizing biological oxidation to remove volatile organic compounds, odors, and hydrocarbons.

<span class="mw-page-title-main">Constructed wetland</span> Artificial wetland to treat wastewater, greywater or stormwater runoff

A constructed wetland is an artificial wetland to treat sewage, greywater, stormwater runoff or industrial wastewater. It may also be designed for land reclamation after mining, or as a mitigation step for natural areas lost to land development. Constructed wetlands are engineered systems that use the natural functions of vegetation, soil, and organisms to provide secondary treatment to wastewater. The design of the constructed wetland has to be adjusted according to the type of wastewater to be treated. Constructed wetlands have been used in both centralized and decentralized wastewater systems. Primary treatment is recommended when there is a large amount of suspended solids or soluble organic matter.

<span class="mw-page-title-main">Koi pond</span> Ponds used for holding koi

Koi ponds are ponds used for holding koi carp, usually as part of a garden. Koi ponds can be designed specifically to promote health and growth of the Nishikigoi or Japanese Ornamental Carp. Koi ponds or lakes are a traditional feature of Japanese gardens, but many hobbyists use special ponds in small locations, with no attempt to suggest a natural landscape feature.

This is an alphabetical index of articles related to gardening.

<span class="mw-page-title-main">Integrated multi-trophic aquaculture</span> Type of aquaculture

Integrated multi-trophic aquaculture (IMTA) is a type of aquaculture where the byproducts, including waste, from one aquatic species are used as inputs for another. Farmers combine fed aquaculture with inorganic extractive and organic extractive aquaculture to create balanced systems for environment remediation (biomitigation), economic stability and social acceptability.

<span class="mw-page-title-main">Expanded clay aggregate</span> Lightweight aggregate made by heating clay at high temperature in a rotary kiln

Lightweight expanded clay aggregate (LECA) or expanded clay (exclay) is a lightweight aggregate made by heating clay to around 1,200 °C (2,190 °F) in a rotary kiln. The heating process causes gases trapped in the clay to expand, forming thousands of small bubbles and giving the material a porous structure. LECA has an approximately round or oblong shape due to circular movement in the kiln and is available in different sizes and densities. LECA is used to make lightweight concrete products and other uses.

Microponics, in agricultural practice, is a symbiotic integration of fish, plants, and micro-livestock within a semi-controlled environment, designed to enhance soil fertility and crop productivity. Coined by Gary Donaldson, an Australian urban farmer, in 2008, the term was used to describe his innovative concept of integrated backyard food production. While "microponics" had been previously used to refer to an obscure grafting method in hydroponics, Donaldson's application of the term was derived from the amalgamation of micro-livestock (micro-farming) and the cultivation of fish and plants, a practice commonly known as aquaponics.

<span class="mw-page-title-main">Historical hydroculture</span>

This is a history of notable hydroculture phenomena. Ancient hydroculture proposed sites and modern revolutionary works are mentioned. Included in this history are all forms of aquatic and semi-aquatic based horticulture that focus on flora: aquatic gardening, semi-aquatic crop farming, hydroponics, aquaponics, passive hydroponics, and modern aeroponics.

Saltwater aquaponics is a combination of plant cultivation and fish rearing, systems with similarities to standard aquaponics, except that it uses saltwater instead of the more commonly used freshwater. In some instances, this may be diluted saltwater. The concept is being researched as a sustainable way to eliminate the stresses that are put on local environments by conventional fish farming practices who expel wastewater into the coastal zones, all while creating complementary crops.

The Integrated Floating Cage Aquageoponics System (IFCAS) was developed as an aquaculture-horticulture based on the concept of integrated farming system approach firstly in Bangladesh in 2013 to produce fish and vegetables in floating condition where waste materials from fish culture dissolved in the pond water and settled on the bottom mud are used for vegetables production. Of the newly adopted term aquageoponics, aqua, geo and ponics means water, mud/soil and cultivation, respectively. In fact, aquageoponics is a new version of traditional aquaponics where soil is used as a medium instead of conventional media such as hydroton, pebbles, and sponges.

Vermiponics is a soil-less growing technique that combines hydroponics with vermiculture by utilizing diluted wormbin leachate as the nutrient solution as opposed to the use of fish waste or the addition of manufactured chemicals to provide the nutrients.

<span class="mw-page-title-main">Recirculating aquaculture system</span> Fish farming method

Recirculating aquaculture systems (RAS) are used in home aquaria and for fish production where water exchange is limited and the use of biofiltration is required to reduce ammonia toxicity. Other types of filtration and environmental control are often also necessary to maintain clean water and provide a suitable habitat for fish. The main benefit of RAS is the ability to reduce the need for fresh, clean water while still maintaining a healthy environment for fish. To be operated economically commercial RAS must have high fish stocking densities, and many researchers are currently conducting studies to determine if RAS is a viable form of intensive aquaculture.

<span class="mw-page-title-main">Sustainable Technology Optimization Research Center</span>

The Sustainable Technology Optimization Research Center (STORC) is a research facility located on the California State University Sacramento campus. There are several players included in operations at the STORC including Sacramento State's Risk Management, the College of Engineering and Computer Science (ECS), and two professors in the Environmental Studies department Brook Murphy and Dudley Burton. The STORC facility is primarily maintained by California State University, Sacramento student interns and volunteers who use applied science and technology to address real world policy, food, health, and energy issues of present-day society. Research at the STORC encompasses engineering and science to test and evaluate new ideas and approaches of sustainable technology to solve environmental problems. Faculty and students address sustainability with an interdisciplinary studies approach. The STORC Vision is to become "an international resource for practical, scalable, and financially viable solutions in the area of sustainable technologies that are suitable for private and/or public sector operations related to the management of energy, food, water, and waste". The STORC Mission is "to demonstrate the operation of innovative commercially viable physical systems that are underpinned by sustainable technologies, and to disseminate the associated plans, public policy discourse, and scientific findings".

<span class="mw-page-title-main">Anthroponics</span>

Anthroponics is a type of hydroponics system that uses human waste like urine as the source of nutrients for the cultivated plants. In general, the human urine or mixed waste is collected and stored for a period of time, before being applied either directly or passed through a biofilter before reaching the plants. As a form of organic hydroponics, anthroponics combines elements of both hydroponics and aquaponics systems.

<span class="mw-page-title-main">Miami Science Barge</span>

The Miami Science Barge was a floating marine laboratory and education platform docked in Museum Park, Miami, FL since 2016. The Barge, designed to help support a more sustainable city, had three main areas of focus: marine ecology and conservation, sustainability, and alternative agriculture. It is completely off-grid and off-pipe and provided approximately enough energy and food production to support an average American family. In its first year, over 3000 students came aboard to learn about the innovative technology on the Barge. The vessel opened to the public on Saturdays. The Miami Science Barge was conceived by Nathalie Manzano and designed by Manzano and Ted Caplow. They were inspired by the Science Barge built in 2006 by New York Sun Works, designed by Caplow. The vessels were of similar size and both had a sustainable technology focus, but they responded to very different local environments and housed differing technology and unique public education programs. The Miami Science Barge emphasized aquaculture. The Miami Science Barge was donated in April 2017 to the brand-new Philip and Patricia Frost Museum of Science, who took over operations. The Miami Science Barge is no longer in use.

References

  1. Sewilam, Hani; Kimera, Fahad; Nasr, Peter; Dawood, Mahmoud (2022-06-30). "A sandponics comparative study investigating different sand media based integrated aqua vegeculture systems using desalinated water". Scientific Reports. 12 (1): 11093. Bibcode:2022NatSR..1211093S. doi:10.1038/s41598-022-15291-7. ISSN   2045-2322. PMC   9247079 . PMID   35773314.
  2. "Food Value, Water Use Efficiency, and Economic Productivity of an Integrated Aquaculture-Olericulture System as Influenced by Tank to Biofilter Ratio – iAVs (Sandponics)" . Retrieved 2024-07-27.
  3. 1 2 "THE AQUA-VEGECULTURE SYSTEM – iAVs (Sandponics)" . Retrieved 2024-07-26.
  4. 1 2 Okomoda, Victor Tosin; Oladimeji, Sunday Abraham; Solomon, Shola Gabriel; Olufeagba, Samuel Olabode; Ogah, Samuel Ijabo; Ikhwanuddin, Mhd (2022-12-18). "Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption". Food Science & Nutrition. 11 (3): 1157–1165. doi:10.1002/fsn3.3154. ISSN   2048-7177. PMC   10002891 . PMID   36911833.
  5. 1 2 "Aquaponics' Biggest Mistake – iAVs (Sandponics)" . Retrieved 2024-07-27.
  6. Lennard, Wilson; Goddek, Simon (2019), Goddek, Simon; Joyce, Alyssa; Kotzen, Benz; Burnell, Gavin M. (eds.), "Aquaponics: The Basics", Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, Cham: Springer International Publishing, pp. 113–143, doi: 10.1007/978-3-030-15943-6_5 , ISBN   978-3-030-15943-6 , retrieved 2024-09-03