New Alchemy Institute

Last updated

The New Alchemy Institute was a research center that did pioneering investigation into organic agriculture, aquaculture and bioshelter design between 1969 and 1991. It was founded by John Todd, Nancy Jack Todd, and William McLarney. Its purpose was to research human support systems of food, water, and shelter and to completely rethink how these systems were designed. [1]

Contents

Purpose of the Institute

The New Alchemy Institute was founded on a 12-acre (49,000 m2), former dairy farm in Hatchville, part of Falmouth, Massachusetts, on Cape Cod. Their stated aim was to do research on behalf of the planet:

"Among our major tasks is the creation of ecologically derived human support systems - renewable energy, agriculture, aquaculture, housing and landscapes. The strategies we research emphasize a minimal reliance on fossil fuels and operate on a scale accessible to individuals, families and small groups. It is our belief that ecological and social transformations must take place at the lowest functional levels of society if humankind is to direct its course towards a greener, saner world.

Our programs are geared to produce not riches, but rich and stable lives, independent of world fashion and the vagaries of international economics. The New Alchemists work at the lowest functional level of society on the premise that society, like the planet itself, can be no healthier than the components of which it is constructed. The urgency of our efforts is based on our belief that the industrial societies which now dominate the world are in the process of destroying it." (Fall 1970, Bulletin of the New Alchemists. )

Areas of research

Bioshelters

A bioshelter is a solar greenhouse that is managed as a self-contained ecosystem. The groupings of plants, animals, soil and insects are selected so that closed loops of life cycles, materials, water, and energy are created, and require minimal inputs from outside the system. They emulate natural rhythms of growth and cycling of nutrients.

New Alchemy built several bioshelters:

Organic agriculture

New Alchemy investigated the practices of organic agriculture for both field crops, and greenhouse growing. They researched intensive gardening, biological pest control, cover cropping, irrigation using fish pond water, perennial food crops, and tree crops.

Aquaculture

New Alchemy experimented with growing edible fish in ponds in the bioshelters. The solar aquaculture ponds were above-ground, translucent tanks. The fertile pond water was used for irrigating the crops in the greenhouses. This proved to be a successful way to raise edible fish, floating hydroponic crops, and irrigated greenhouse food crops.

Ideological basis

The scientists working at New Alchemy were determined to rethink how human support systems were designed. They looked to nature as the ultimate designer, using careful observation of natural cycles and processes as the template for creating truly sustainable systems.

Publications

The research conducted at New Alchemy was documented in a series of journals and technical bulletins. A complete list is available at: New Alchemy Institute

Related Research Articles

The following outline is provided as an overview of and topical guide to agriculture:

<span class="mw-page-title-main">Intensive farming</span> Type of agriculture using high inputs to try to get high outputs

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital and labour, and higher crop yields per unit land area.

<span class="mw-page-title-main">Fish farming</span> Raising fish commercially in enclosures

Fish farming or pisciculture involves commercial breeding of fish, usually for food, in fish tanks or artificial enclosures such as fish ponds. It is a particular type of aquaculture, which is the controlled cultivation and harvesting of aquatic animals such as fish, crustaceans, molluscs and so on, in natural or pseudo-natural environment. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species' natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species produced in fish farming are carp, catfish, salmon and tilapia.

The following outline is provided as an overview of and topical guide to sustainable agriculture:

<span class="mw-page-title-main">Sustainable agriculture</span> Farming approach that balances environmental, economic and social factors in the long term

Sustainable agriculture is farming in sustainable ways meeting society's present food and textile needs, without compromising the ability for current or future generations to meet their needs. It can be based on an understanding of ecosystem services. There are many methods to increase the sustainability of agriculture. When developing agriculture within sustainable food systems, it is important to develop flexible business process and farming practices. Agriculture has an enormous environmental footprint, playing a significant role in causing climate change, water scarcity, water pollution, land degradation, deforestation and other processes; it is simultaneously causing environmental changes and being impacted by these changes. Sustainable agriculture consists of environment friendly methods of farming that allow the production of crops or livestock without damage to human or natural systems. It involves preventing adverse effects to soil, water, biodiversity, surrounding or downstream resources—as well as to those working or living on the farm or in neighboring areas. Elements of sustainable agriculture can include permaculture, agroforestry, mixed farming, multiple cropping, and crop rotation.

<span class="mw-page-title-main">Aquaponics</span> System combining aquaculture with hydroponics in a symbiotic environment

Aquaponics is a food production system that couples aquaculture with hydroponics whereby the nutrient-rich aquaculture water is fed to hydroponically grown plants.

John Todd is a Canadian biologist working in the general field of ecological design. He addresses problems of food production and wastewater processing by using ecosystems technologies that incorporate plants, animals and bacteria. Todd has developed "Arks" or "bioshelters", ecologically closed "life-support systems" with the goal of sustainable functioning. He combines alternative technologies for renewable energy, organic farming, aquaculture, hydroponics and architecture to create "living machines" or "eco-machines".

<span class="mw-page-title-main">Fish pond</span> Man-made body of standing water used for pisciculture

A fish pond or fishpond is a controlled pond, small artificial lake or retention basin that is stocked with fish and is used in aquaculture for fish farming, for recreational fishing, or for ornamental purposes.

A bioshelter is a solar greenhouse managed as an indoor ecosystem. The word bioshelter was coined by the New Alchemy Institute and solar designers Sean Wellesley-Miller and Day Chahroudi. The term was created to distinguish their work in greenhouse design and management from twentieth century petro-chemical fuelled monoculture greenhouses.

<span class="mw-page-title-main">Integrated multi-trophic aquaculture</span> Type of aquaculture

Integrated multi-trophic aquaculture (IMTA) provides the byproducts, including waste, from one aquatic species as inputs for another. Farmers combine fed aquaculture with inorganic extractive and organic extractive aquaculture to create balanced systems for environment remediation (biomitigation), economic stability and social acceptability.

<span class="mw-page-title-main">Agriculture in Bangladesh</span> Economic sector in Bangladesh

Agriculture is the largest employment sector in Bangladesh, making up 14.2 percent of Bangladesh's GDP in 2017 and employing about 42.7 percent of the workforce. The performance of this sector has an overwhelming impact on major macroeconomic objectives like employment generation, poverty alleviation, human resources development, food security, and other economic and social forces. A plurality of Bangladeshis earn their living from agriculture. Due to a number of factors, Bangladesh's labour-intensive agriculture has achieved steady increases in food grain production despite the often unfavorable weather conditions. These include better flood control and irrigation, a generally more efficient use of fertilisers, as well as the establishment of better distribution and rural credit networks.

<span class="mw-page-title-main">Agriculture in Madagascar</span> Economic sector in Madagascar

Agriculture employs the majority of Madagascar's population. Mainly involving smallholders, agriculture has seen different levels of state organisation, shifting from state control to a liberalized sector.

<span class="mw-page-title-main">Agriculture in Kenya</span>

Agriculture in Kenya dominates Kenya's economy. 15–17 percent of Kenya's total land area has sufficient fertility and rainfall to be farmed, and 7–8 percent can be classified as first-class land. In 2006, almost 75 percent of working Kenyans made their living by farming, compared with 80 percent in 1980. About one-half of Kenya's total agricultural output is non-marketed subsistence production.

Microponics is the symbiotic integration of fish, plants, and micro-livestock in a semi-controlled environment. The term was adopted by Australian urban farmer, Gary Donaldson, in 2008, to describe his integrated backyard food production concept. While microponics was also the name given to an obscure grafting method used in hydroponics, Donaldson's use of the term was derived from the integration of micro-livestock and the production of fish and plants - aquaponics.

<span class="mw-page-title-main">Agricultural engineering</span> Application of engineering for agricultural purposes

Agricultural engineering, also known as agricultural and biosystems engineering, is the field of study and application of engineering science and designs principles for agriculture purposes, combining the various disciplines of mechanical, civil, electrical, food science, environmental, software, and chemical engineering to improve the efficiency of farms and agribusiness enterprises as well as to ensure sustainability of natural and renewable resources.

Building-integrated agriculture (BIA) is the practice of locating high-performance hydroponic greenhouse farming systems on and in mixed-use buildings to exploit synergies between the built environment and agriculture.

<span class="mw-page-title-main">Fishing in Pakistan</span>

Fishery and fishing industry plays a significant part in the national economy of Pakistan. With a coastline of about 1,120 km, Pakistan has enough fishery resources that remain to be developed. Most of the population of the coastal areas of Sindh and Balochistan depends on fisheries for livelihood. It is also a major source of export earning.

National Innovations in Climate Resilient Agriculture (NICRA) was launched during February 2011 by Indian Council of Agricultural Research (ICAR) with the funding from Ministry of Agriculture, Government of India. The mega project has three major objectives of strategic research, technology demonstrations and capacity building. Assessment of the impact of climate change simultaneous with formulation of adaptive strategies is the prime approach under strategic research across all sectors of agriculture, dairying and fisheries.

<span class="mw-page-title-main">Urban aquaculture</span>

Urban aquaculture is the aquatic farming of organisms, including all types of fish, cuttlefish, mussel shrimp and aqua plants within the urban environment. In essence, urban aquaculture is the practice of aquaculture in an urban, or urbanising, environment. Urban aquaculture systems can be associated with a multitude of different production locations, species used, environment, and production intensity. The use of urban aquaculture has increased over the last several years as societies continue to urbanise and demand for food in urban environments increases. Methods of production include recirculating systems; land-based culture systems; multifunctional wetlands; ponds, borrow pits and lakes; cages and culture-based fisheries. Most production in urban environments will include either extensive or intensive, compared to aquaculture in general which is normally semi-intensive.

Biofloc technology (BT) is a fish farming system that recycles waste nutrients as fish food. Biofloc, specifically cultured microorganisms, are introduced into the water to form microbial protein from toxic fish waste and other organic matter in the water. This helps maintain water quality as well as lowering costs. Candidate species must be resistant to environmental changes, be able to tolerate high stocking density, adapt to changes in dissolved oxygen, and be able to take microbial protein as food. BT is currently used in large-scale shrimp and finfish farms, mainly in Asia.

References

  1. Gordon, Alastair (12 April 2018). "Remembering Jay Baldwin, experimental geodesic dome champion - Archpaper.com". archpaper.com. Retrieved 18 May 2018.

Coordinates: 41°36′49.8″N70°34′34.6″W / 41.613833°N 70.576278°W / 41.613833; -70.576278