Intel 8061

Last updated

The Intel 8061 microcontroller is most notable for its use in the Ford EEC-IV automotive engine control unit. A close relative of the 8096, the Intel 8061 is second-sourced by Toshiba (under the model number 6127 and 6126) and Motorola (now Freescale Semiconductor).

Microcontroller small computer on a single integrated circuit

A microcontroller is a small computer on a single integrated circuit. In modern terminology, it is similar to, but less sophisticated than, a system on a chip (SoC); an SoC may include a microcontroller as one of its components. A microcontroller contains one or more CPUs along with memory and programmable input/output peripherals. Program memory in the form of ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.

Ford Motor Company American automobile manufacturer

Ford Motor Company is an American multinational automaker that has its main headquarter in Dearborn, Michigan, a suburb of Detroit. It was founded by Henry Ford and incorporated on June 16, 1903. The company sells automobiles and commercial vehicles under the Ford brand and most luxury cars under the Lincoln brand. Ford also owns Brazilian SUV manufacturer Troller, an 8% stake in Aston Martin of the United Kingdom and a 32% stake in Jiangling Motors. It also has joint-ventures in China, Taiwan, Thailand, Turkey, and Russia. The company is listed on the New York Stock Exchange and is controlled by the Ford family; they have minority ownership but the majority of the voting power.

Engine control unit Control unit for the control, regulation and monitoring of engine functions in a car engine

An engine control unit (ECU), also commonly called an engine control module (ECM), is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure optimal engine performance. It does this by reading values from a multitude of sensors within the engine bay, interpreting the data using multidimensional performance maps, and adjusting the engine actuators. Before ECUs, air-fuel mixture, ignition timing, and idle speed were mechanically set and dynamically controlled by mechanical and pneumatic means.

Contents

Introduction

The MCS-96 family originated as a commercial derivative of the Intel 8061, the first processor in the Ford EEC-IV engine controller family. Differences between the 8061 and the 8096 include the memory interface bus, the 8061's M-Bus being a 'burst-mode' bus requiring a tracking program counter in the memory devices. There were also considerable differences in the I/O peripherals of the two parts - the 8061 had 8 HSI (pulse-measurement) inputs, 10 HSO (pulse-generation) outputs entirely separated from the HSI pins, and a non-sampling 10-bit ADC with more channels than the 8096 had. Many differences between the EEC-IV and the 8096 resulted from an effort to share pins to reduce I/O pin count in favor of using the pins for a more conventional memory interface bus.

Intel MCS-96

The Intel MCS-96 is a family of microcontrollers (MCU) commonly used in embedded systems. The family is often referred to as the 8xC196 family, or 80196, the most popular MCU in the family. These MCUs are commonly used in hard disk drives, modems, printers, pattern recognition and motor control. In 2007, Intel announced the discontinuance of the entire MCS-96 family of microcontrollers. Intel noted that "There are no direct replacements for these components and a redesign will most likely be necessary."

The 8061 and its derivatives were used in almost all Ford automobiles built from 1983 through the end of the 20th century. This processor controlled fuel mixture and injection timing, spark advance (often in conjunction with a separate spark module), exhaust gas recirculation, and other engine functions.

Exhaust gas recirculation

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NO
x
) emissions reduction technique used in petrol/gasoline and diesel engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. This dilutes the O2 in the incoming air stream and provides gases inert to combustion to act as absorbents of combustion heat to reduce peak in-cylinder temperatures. NO
x
is produced in high temperature mixtures of atmospheric nitrogen and oxygen that occur in the combustion cylinder, and this usually occurs at cylinder peak pressure. Another primary benefit of external EGR valves on a spark ignition engine is an increase in efficiency, as charge dilution allows a larger throttle position and reduces associated pumping losses.

M-Bus

The 8061 had an interruptible-burst-mode 11-wire 8-bit memory interface bus called the M-Bus. This bus required a program counter and a data address register in each memory device. Each chip reset or branch instruction would update the program counter in the memory devices, after which instruction stream data would be read sequentially. The instruction stream could be interrupted to read or write data bytes and words using the memory's data address register while retaining the memory's program counter copyallowing resumption of reading the instruction stream without having to re-send a program address after each data access.

Address map

The 8061 had a 240-byte internal register file, from address 0010H to 00FFH. I/O addresses were from 0002H to 000FH. Throughout the 8061 family, address 0000H was reserved for a constant ZERO register. This permitted use of relative addressing to access absolute addresses. The stack pointer was at 00010H. 8061 could address 64K of memory. Reset was to 2000H. Interrupt vectors were at 2010H.

The byte is a unit of digital information that most commonly consists of eight bits, representing a binary number. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures.

Process, package

The 8061 was built in a 3-micrometre N-MOS silicon-gate process. Plastic 68-pin flatpacks, ceramic packages, and 40-pin DIP packages were used, depending on the I/O pin-count requirements of a particular module design.

Derivatives

Ford created the Ford Microelectronics facility in Colorado Springs in 1982 to propagate the EEC-IV family, develop other custom circuits for use in automobiles, and to explore the Gallium Arsenide integrated circuit market. Parts in that family included the 8063, which never reached production. The family also included the 8065, produced in high volumes, which incorporated a memory controller allowing it to address a 1-megabyte memory, considerably greater than the 64K of the 8061 and 8096.

Colorado Springs, Colorado Home rule municipality in Colorado, United States

Colorado Springs is a home rule municipality that is the largest city by area in Colorado as well as the county seat and the most populous municipality of El Paso County, Colorado, United States. Colorado Springs is located in the east central portion of the state. It is situated on Fountain Creek and is located 60 miles (97 km) south of the Colorado State Capitol in Denver.

The 8063, 8065 and later EPIC were CMOS derivatives capable of reduced power consumption.

The 8065 had an enhanced instruction set, additional register space, and a much-enhanced I/O. As a result, the 8065 had a register file from address 0020H to 03FFH, addressable in 4 banks. I/O addresses were from 0002H to 001FH. The stack pointer was at 00020H.

HSI

The 8061 had an 8-channel event-capture system for measuring and timing pulsed inputs. A 16-bit timer value was captured in a FIFO along with the new state of all 8 pins whenever a transition was detected on an enabled pin. The FIFO was implemented in a small dynamic RAM.

The HSI was used, for example, for recording times of crankshaft-position-sensor events, which were used for determining engine speed.

HSO

The 8061 had a 10-channel pulse-generator output system for generating timed outputs. This essentially had a small content-addressable memory (CAM) that compared event times with the same 16-bit timer used for the HSI system. Each event time was written to CAM along with a command. When a match of a CAM location with the timer was found, the event was executed and the CAM location returned to an empty pool. The CAM was simulated with dynamic RAM and a comparator. The HSO was used for a variety of purposes including fuel injection pulse timing.

ADC

The 8061 and its derivatives had a multichannel analog-to-digital converter on the processor chip. This was used for such purposes as sensing engine temperature and throttle angle, and for reading the exhaust-gas oxygen sensor.

Interrupts

The 8061 had an 8-channel vectored priority interrupt system. The later 8065 provided 40 channels, of which 32 were tied into the HSI/HSO event system.

Serial Port

Various members of the 8061 family had a custom serial port on-chip. This was intended as a port expander and not as a general-purpose UART

Companion Memory

The 8061 was used with a family of other devices, including the 8361 a companion memory having ROM and some RAM. In later modules, one-time-programmable (OTP) EPROM memory was substituted for the original mask-programmed memory this greatly simplified logistics given the wide variety of ROM codes required in each model year.

Related Research Articles

Intel 8080 8-bit microprocessor

The Intel 8080 ("eighty-eighty") was the second 8-bit microprocessor designed and manufactured by Intel and was released in April 1974. It is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock frequency limit was 2 MHz, and with common instructions using 4, 5, 7, 10, or 11 cycles this meant that it operated at a typical speed of a few hundred thousand instructions per second. A faster variant 8080A-1 became available later with clock frequency limit up to 3.125 MHz.

Intel 8086 16-bit central processing unit

The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design, including the widespread version called IBM PC XT.

Intel 8088

The Intel 8088 microprocessor is a variant of the Intel 8086. Introduced on July 1, 1979, the 8088 had an eight-bit external data bus instead of the 16-bit bus of the 8086. The 16-bit registers and the one megabyte address range were unchanged, however. In fact, according to the Intel documentation, the 8086 and 8088 have the same execution unit (EU)—only the bus interface unit (BIU) is different. The original IBM PC was based on the 8088.

Intel 80386 32-bit microprocessor introduced by Intel in 1985

The Intel 80386, also known as i386 or just 386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistors and were the CPU of many workstations and high-end personal computers of the time. As the original implementation of the 32-bit extension of the 80286 architecture, the 80386 instruction set, programming model, and binary encodings are still the common denominator for all 32-bit x86 processors, which is termed the i386-architecture, x86, or IA-32, depending on context.

Intel 80186

The Intel 80186, also known as the iAPX 186, or just 186, is a microprocessor and microcontroller introduced in 1982. It was based on the Intel 8086 and, like it, had a 16-bit external data bus multiplexed with a 20-bit address bus. It was also available as the 80188, with an 8-bit external data bus.

Motorola 68000 microprocessor

The Motorola 68000 is a 16/32-bit CISC microprocessor, which implements a 32-bit instruction set, with 32-bit registers and 32-bit internal data bus, but with a 16-bit data ALU and two 16-bit arithmetic ALUs and a 16-bit external data bus, designed and marketed by Motorola Semiconductor Products Sector. Introduced in 1979 with HMOS technology as the first member of the successful 32-bit Motorola 68000 series, it is generally software forward-compatible with the rest of the line despite being limited to a 16-bit wide external bus. After 40 years in production, the 68000 architecture is still in use.

Zilog Z80 8-bit microprocessor

The Z80 CPU is an 8-bit based microprocessor introduced by Zilog as the startup company's first product. The Z80 was conceived by Federico Faggin in late 1974 and developed by him and his then-11 employees at Zilog from early 1975 until March 1976, when the first fully working samples were delivered. The Z80 was officially introduced on the market in July 1976. With the revenue from the Z80, the company built its own chip factories and grew to over a thousand employees over the following two years.

Intel MCS-51 microcontroller chip

The Intel MCS-51 is a single chip microcontroller (MCU) series developed by Intel in 1980 for use in embedded systems. The architect of the instruction set of the Intel MCS-51 was John H. Wharton. Intel's original versions were popular in the 1980s and early 1990s and enhanced binary compatible derivatives remain popular today. It is an example of a complex instruction set computer, and has separate memory spaces for program instructions and data.

Intel 8085 8-bit microprocessor

The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in 1976. It is a software-binary compatible with the more-famous Intel 8080 with only two minor instructions added to support its added interrupt and serial input/output features. However, it requires less support circuitry, allowing simpler and less expensive microcomputer systems to be built.

Intel 4040

The Intel 4040 microprocessor was the successor to the Intel 4004. It was introduced in 1974. The 4040 employed a 10 μm silicon gate enhancement load PMOS technology, was made up of 3,000 transistors and could execute approximately 62,000 instructions per second. General performance, bus layout and instruction set was identical to the 4004, with the main improvements being in the addition of extra lines and instructions to recognise and service interrupts and hardware Halt/Stop commands, an extended internal stack and general-purpose "Index" register space to handle nesting of several subroutines and/or interrupts, plus a doubling of program ROM address range.

Memory-mapped I/O (MMIO) and port-mapped I/O (PMIO) are two complementary methods of performing input/output (I/O) between the central processing unit (CPU) and peripheral devices in a computer. An alternative approach is using dedicated I/O processors, commonly known as channels on mainframe computers, which execute their own instructions.

NEC V20

The NEC V20 (μPD70108) was a processor made by NEC that was a reverse-engineered, pin-compatible version of the Intel 8088 with an instruction set compatible with the Intel 80186. The V20 was introduced in 1982, and the V30 debuted in 1983.

Intel 8253

The Intel 8253 and 8254 are Programmable Interval Timers (PITs), which perform timing and counting functions using three 16-bit counters.

Signetics 2650 8-bit microprocessor

The Signetics 2650 was an 8-bit microprocessor introduced in mid-1975. According to Adam Osborne's book An Introduction to Microprocessors Vol 2: Some Real Products, it was "the most minicomputer-like" of the microprocessors available at the time.

In computing, Intel's Advanced Programmable Interrupt Controller (APIC) is a family of interrupt controllers. As its name suggests, the APIC is more advanced than Intel's 8259 Programmable Interrupt Controller (PIC), particularly enabling the construction of multiprocessor systems. It is one of several architectural designs intended to solve interrupt routing efficiency issues in multiprocessor computer systems.

When writing firmware for an embedded system, immunity-aware programming refers to programming techniques which improve the tolerance of transient errors in the program counter or other modules of a program that would otherwise lead to failure. Transient errors are typically caused by single event upsets, insufficient power, or by strong electromagnetic signals transmitted by some other "source" device.

A Special Function Register is a register within a microprocessor, which controls or monitors various aspects of the microprocessor's function. Depending on the processor architecture, this can include, but is not limited to:

In computer architecture, 16-bit integers, memory addresses, or other data units are those that are 16 bits wide. Also, 16-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 16-bit microcomputers are computers in which 16-bit microprocessors were the norm.

The Ford EEC or Electronic Engine Control is a series of ECU that was designed and built by Ford Motor Company. They were introduced in 1978 and went through several model iterations.