The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip was developed and manufactured by Intel in the first half of the 1970s for the Intel 8080 microprocessor. The 8255 provides 24 parallel input/output lines with a variety of programmable operating modes.
The 8255 is a member of the MCS-85 family of chips, designed by Intel for use with their 8085 and 8086 microprocessors and their descendants. [1] It was first available in a 40-pin DIP and later a 44-pin PLCC packages. [2] It found wide applicability in digital processing systems and was later cloned by other manufacturers. The 82C55 is a CMOS version for higher speed and lower current consumption.
The functionality of the 8255 is now mostly embedded in larger VLSI processing chips as a sub-function. A CMOS version of the 8255 is still being made [3] by Renesas but mostly used to expand the I/O of microcontrollers.
The 8255 has a similar function to the Motorola 6820 PIA (Peripheral Interface Adapter) from the Motorola 6800 family, also originally packaged as 40-pin DIL. The 8255 provides 24 I/O pins with four programmable direction bits: one for Port A(7:0) (i.e., all pins in the port), one for Port B(7:0), one for Port C(3:0) and one for Port C(7:4). By contrast, the Motorola and MOS chips provide only 16 I/O pins plus 4 control pins, but the Motorola/MOS chips allow the direction (input or output) of all I/O pins to be individually programmed. Both have configurations that will do a certain amount of automatic handshaking and interrupt generation.
Other comparable microprocessor I/O chips are the 2655 Programmable Peripheral Interface from the Signetics 2650 family, the Z80 PIO, the Western Design Center WDC 65C21 (equivalent to the Motorola 6820/6821), and the MOS Technology 6522 VIA and 6526 CIA which had considerable additional functionality such as timers and shift registers.
The industrial grade version of Intel ID8255A was available for US$17.55 in quantities of 100 and up. [4] The available Intel 8255A-5 version was for USD $6.55 in quantities of 100 or more. [5] The available 82C55A CMOS version was outsourced to Oki Electronic Industry Co., Ltd. [6] The available package from Intel branded 82C55 in 44-pin PLCC of sampling at fourth quarter of 1985. [7] In Eastern Europe, equivalent circuits were manufactured as the KR580VV55A in the Soviet Union and as the MHB8255A by Tesla in Czechoslovakia.
The 8255 was widely used in many microcomputer/microcontroller systems and home computers such as the SV-328 and all MSX models. The 8255 was used in the original IBM-PC, [8] PC/XT, PC/jr and clones, along with numerous homebuilt computers such as the N8VEM.
The 8255 gives a CPU or digital system access to programmable parallel I/O. [9] The 8255 has 24 input/output pins. [10] These are divided into three 8-bit ports (A, B, C). [11] Port A and port B can be used as 8-bit input/output ports. Port C can be used as an 8-bit input/output port or as two 4-bit input/output ports or to produce handshake signals for ports A and B.
The three ports are further grouped as follows:
Eight data lines (D0–D7) are available (with an 8-bit data buffer) to read/write data into the ports or control register under the status of the RD (pin 5) and WR (pin 36), which are active-low signals for read and write operations respectively. Address lines A1 and A0 allow to access a data register for each port or a control register, as listed below:
A1 | A0 | Port selected |
---|---|---|
0 | 0 | port A |
0 | 1 | port B |
1 | 0 | port C |
1 | 1 | control register |
The control signal chip select CS (pin 6) is used to enable the 8255 chip. It is an active-low signal, i.e., when CS = 0, the 8255 is enabled. The RESET input (pin 35) is connected to the RESET line of system like 8085, 8086, etc., so that when the system is reset, all the ports are initialized as input lines. This is done to prevent 8255 and/or any peripheral connected to it from being destroyed due to mismatch of port direction settings. As an example, consider an input device connected to 8255 at port A. If from the previous operation, port A is initialized as an output port and if 8255 is not reset before using the current configuration, then there is a possibility of damage of either the input device connected or 8255 or both, since both 8255 and the device connected will be sending out data.
The control register (or the control logic, or the command word register) is an 8-bit register used to select the modes of operation and input/output designation of the ports. [12]
There are two basic operational modes of 8255:
The two modes are selected on the basis of the value present at the D7 bit of the control word register. When D7 = 1, 8255 operates in I/O mode, and when D7 = 0, it operates in the BSR mode.
The Bit Set/Reset (BSR) mode is available on port C only. Each line of port C (PC7 - PC0) can be set or reset by writing a suitable value to the control word register. BSR mode and I/O mode are independent and selection of BSR mode does not affect the operation of other ports in I/O mode. [13]
Selection of port C pin is determined as follows:
D3 | D2 | D1 | Bit/pin of port C selected |
---|---|---|---|
0 | 0 | 0 | PC0 |
0 | 0 | 1 | PC1 |
0 | 1 | 0 | PC2 |
0 | 1 | 1 | PC3 |
1 | 0 | 0 | PC4 |
1 | 0 | 1 | PC5 |
1 | 1 | 0 | PC6 |
1 | 1 | 1 | PC7 |
As an example, if it is needed that PC5 be set, then in the control word,
Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).
D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes: [14]
D6 | D5 | Mode |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | X | 2 |
For example, if port B and upper port C have to be initialized as input ports and lower port C and port A as output ports (all in mode 0):
Hence, for the desired operation, the control word register will have to be loaded with "10001010" = 8A (hex).
In this mode, the ports can be used for simple I/O operations without handshaking signals. Port A, port B provide simple I/O operation. The two halves of port C can be either used together as an additional 8-bit port, or they can be used as individual 4-bit ports. Since the two halves of port C are independent, they may be used such that one-half is initialized as an input port while the other half is initialized as an output port.
The input/output features in mode 0 are as follows:
'Latched' means the bits are put into a storage register (array of flip-flops) which holds its output constant even if the inputs change after being latched.
The 8255's outputs are latched to hold the last data written to them. This is required because the data only stays on the bus for one cycle. So, without latching, the outputs would become invalid as soon as the write cycle finishes.
The inputs are not latched because the CPU only has to read their current values, then store the data in a CPU register or memory if it needs to be referenced at a later time. If an input changes while the port is being read then the result may be indeterminate.
When we wish to use port A or port B for handshake (strobed) input or output operation, we initialise that port in mode 1 (port A and port B can be initialised to operate in different modes, i.e., for e.g., port A can operate in mode 0 and port B in mode 1). Some of the pins of port C function as handshake lines.
For port B in this mode (irrespective of whether is acting as an input port or output port), PC0, PC1 and PC2 pins function as handshake lines.
If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function as handshake signals. Pins PC6 and PC7 are available for use as input/output lines.
The mode 1 which supports handshaking has following features:
Input Handshaking signals
Output Handshaking signals
Only port A can be initialized in this mode. Port A can be used for bidirectional handshake data transfer. This means that data can be input or output on the same eight lines (PA0 - PA7). Pins PC3 - PC7 are used as handshake lines for port A. The remaining pins of port C (PC0 - PC2) can be used as input/output lines if group B is initialized in mode 0 or as handshaking for port B if group B is initialized in mode 1. In this mode, the 8255 may be used to extend the system bus to a slave microprocessor or to transfer data bytes to and from a floppy disk controller. Acknowledgement and handshaking signals are provided to maintain proper data flow and synchronisation between the data transmitter and receiver.
The Intel 8080 ("eighty-eighty") is the second 8-bit microprocessor designed and manufactured by Intel. It first appeared in April 1974 and is an extended and enhanced variant of the earlier 8008 design, although without binary compatibility. The initial specified clock rate or frequency limit was 2 MHz, with common instructions using 4, 5, 7, 10, or 11 clock cycles. As a result, the processor is able to execute several hundred thousand instructions per second. Two faster variants, the 8080A-1 and 8080A-2, became available later with clock frequency limits of 3.125 MHz and 2.63 MHz respectively. The 8080 needs two support chips to function in most applications: the i8224 clock generator/driver and the i8228 bus controller. The 8080 is implemented in N-type metal–oxide–semiconductor logic (NMOS) using non-saturated enhancement mode transistors as loads thus demanding a +12 V and a −5 V voltage in addition to the main transistor–transistor logic (TTL) compatible +5 V.
The Motorola 68000 is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector.
The StrongARM is a family of computer microprocessors developed by Digital Equipment Corporation and manufactured in the late 1990s which implemented the ARM v4 instruction set architecture. It was later acquired by Intel in 1997 from DEC's own Digital Semiconductor division as part of a settlement of a lawsuit between the two companies over patent infringement. Intel then continued to manufacture it before replacing it with the StrongARM-derived ARM-based follow-up architecture called XScale in the early 2000s.
The Zilog Z80 is an 8-bit microprocessor designed by Zilog that played an important role in the evolution of early computing. Software-compatible with the Intel 8080, it offered a compelling alternative due to its better integration and increased performance. The Z80 boasted fourteen registers compared to the 8080's seven, along with additional instructions for bit manipulation, making it a more powerful chip.
The 6507 is an 8-bit microprocessor from MOS Technology, Inc. It is a version of their 40-pin 6502 packaged in a 28-pin DIP, making it cheaper to package and integrate in systems. The reduction in pin count is achieved by reducing the address bus from 16 bits to 13 and removing a number of other pins used only for certain applications.
The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is the last 8-bit microprocessor developed by Intel.
The Intel 4040 ("forty-forty") is the second 4-bit microprocessor designed and manufactured by Intel. Introduced in 1974 as a successor to the Intel 4004, the 4040 was produced with a 10 μm process and includes silicon gate enhancement-load PMOS logic technology. The 4040 contained 3,000 transistors and could execute approximately 62,000 instructions per second.
The MSP430 is a mixed-signal microcontroller family from Texas Instruments, first introduced on 14 February 1992. Built around a 16-bit CPU, the MSP430 was designed for low power consumption, embedded applications and low cost.
Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.
JTAG is an industry standard for verifying designs of and testing printed circuit boards after manufacture.
The MOS Technology 6522 Versatile Interface Adapter (VIA) is an integrated circuit that was designed and manufactured by MOS Technology as an I/O port controller for the 6502 family of microprocessors. It provides two bidirectional 8-bit parallel I/O ports, two 16-bit timers, and an 8-bit shift register for serial communications or data conversion between serial and parallel forms. The direction of each bit of the two I/O ports can be individually programmed. In addition to being manufactured by MOS Technology, the 6522 was second sourced by other companies including Rockwell and Synertek.
A Peripheral Interface Adapter (PIA) is a peripheral integrated circuit providing parallel I/O interfacing for microprocessor systems.
The Intel 8259 is a programmable interrupt controller (PIC) designed for the Intel 8085 and 8086 microprocessors. The initial part was 8259, a later A suffix version was upward compatible and usable with the 8086 or 8088 processor. The 8259 combines multiple interrupt input sources into a single interrupt output to the host microprocessor, extending the interrupt levels available in a system beyond the one or two levels found on the processor chip. The 8259A was the interrupt controller for the ISA bus in the original IBM PC and IBM PC AT.
The Intel 8253 and 8254 are programmable interval timers (PITs), which perform timing and counting functions using three 16-bit counters.
The W65C21S is a very flexible Peripheral Interface Adapter (PIA) for use with WDC’s 65xx and other 8-bit microprocessor families. It is produced by Western Design Center (WDC).
The W65C22 versatile interface adapter (VIA) is an input/output device for use with the 65xx series microprocessor family.
The DAI personal computer is an early home computer from the Belgian company Data Applications International. The DAI came to market in 1980. It provided many pioneering features such as high resolution color graphics, a maths co-processor, and a pre-compiling BASIC interpreter. However, it never became a commercial success.
Intel 8237 is a direct memory access (DMA) controller, a part of the MCS 85 microprocessor family. It enables data transfer between memory and the I/O with reduced load on the system's main processor by providing the memory with control signals and memory address information during the DMA transfer.
A single-board microcontroller is a microcontroller built onto a single printed circuit board. This board provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs. The intention is that the board is immediately useful to an application developer, without requiring them to spend time and effort to develop controller hardware.
The Europe Card Bus is a computer bus developed in 1977 by the company Kontron, mainly for the 8-bit Zilog Z80, Intel 8080 and Intel 8085 microprocessor families.