Interactor

Last updated

An interactor is a person who interacts with the members of the audience.

Contents

or

An interactor is an entity that natural selection acts upon.

Definition

Interactor is a concept commonly used in the field of evolutionary biology. A widely accepted theory of evolution is the theory from Charles Darwin. He states, in short, that in a population there is often variation in heritable traits among individuals, in which a form of the trait might be more beneficial than the other form(s). Due to this difference, the chance of getting more adjusted offspring to the environment is higher. [1] The process describing the selection of the environment on the traits of organisms is called natural selection. Based on this idea natural selection seems to act on traits of individuals, which evolutionary biologist like to call the interactor. So stated in a different way; an interactor is defined as a part of an organism that natural selection acts upon.

Replicators and vehicles

Replicators

Other terms that are often mentioned in the same context as interactors, are replicators and vehicles. When replicators are mentioned, they mean things that pass on their entire structure through successive replications, like genes. This is not the same as an interactor, as interactors are things that interact with their environment and natural selection can act upon. Due to this interaction with the environment, interactors cause differential replication. However, some things (for example genes) can be both replicators and interactors.

Vehicles

Vehicles are often used as a synonym of interactors, only in a way that vehicles can "drive" natural selection, as if they have the behaviour to steer natural selection in a specific way. The term "vehicle" makes it look that way and therefore some people (like Hull) prefer the word "interactor" to "vehicle" for the same concept. An example of an interactor is the shell colour of snails (see below).

Research on common garden snails as illustration for natural selection and interactors

A study on common garden snails was performed and showed how natural selection on an interactor works. This species is highly suitable for evolutionary research due to their easily to score phenotype and their very straightforward genotype causing the phenotypic variation. Phenotypic variation among common garden snails can be found in their shell colour and banding and both colouring and banding is regulated by one single gene. The snail shells have variations in colours namely brown, pink and yellow; with brown being more dominant than pink and yellow. Furthermore, banding variation can be described as unbanded and banded, with banded individuals differing from another by the number of bands. One of the conclusions that could be drawn out of this research is that in grasslands, yellow individuals had a higher survival rate and were more abundant in these grasslands. This means that natural selection acted on the shell colour, which means that shell colour is the interactor in this example. Furthermore, they found that the brown individuals were more abundant and had a higher survival rate in woodlands than the yellow individuals. Moreover, a specific form of natural selection called thermal selection showed that shell colour worked in the interaction with the environment by yellow shells being more abundant, so more adjusted to reflect heat, in warmer places.

Related Research Articles

<span class="mw-page-title-main">Natural selection</span> Mechanism of evolution by differential survival and reproduction of individuals

Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which is intentional, whereas natural selection is not.

<span class="mw-page-title-main">Phenotype</span> Composite of the organisms observable characteristics or traits

In genetics, the phenotype is the set of observable characteristics or traits of an organism. The term covers the organism's morphology, its developmental processes, its biochemical and physiological properties, its behavior, and the products of behavior. An organism's phenotype results from two basic factors: the expression of an organism's genetic code and the influence of environmental factors. Both factors may interact, further affecting the phenotype. When two or more clearly different phenotypes exist in the same population of a species, the species is called polymorphic. A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and then again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".

<i>The Selfish Gene</i> 1976 book by Richard Dawkins

The Selfish Gene is a 1976 book on evolution by ethologist Richard Dawkins, in which the author builds upon the principal theory of George C. Williams's Adaptation and Natural Selection (1966). Dawkins uses the term "selfish gene" as a way of expressing the gene-centred view of evolution, popularising ideas developed during the 1960s by W. D. Hamilton and others. From the gene-centred view, it follows that the more two individuals are genetically related, the more sense it makes for them to behave cooperatively with each other.

<i>The Extended Phenotype</i> 1982 book by Richard Dawkins

The Extended Phenotype is a 1982 book by the evolutionary biologist Richard Dawkins, in which the author introduced a biological concept of the same name. The book’s main idea is that phenotype should not be limited to biological processes such as protein biosynthesis or tissue growth, but extended to include all effects that a gene has on its environment, inside or outside the body of the individual organism.

<span class="mw-page-title-main">Genetic variation</span> Difference in DNA among individuals or populations

Genetic variation is the difference in DNA among individuals or the differences between populations among the same species. The multiple sources of genetic variation include mutation and genetic recombination. Mutations are the ultimate sources of genetic variation, but other mechanisms, such as genetic drift, contribute to it, as well.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

Balancing selection refers to a number of selective processes by which multiple alleles are actively maintained in the gene pool of a population at frequencies larger than expected from genetic drift alone. Balancing selection is rare compared to purifying selection. It can occur by various mechanisms, in particular, when the heterozygotes for the alleles under consideration have a higher fitness than the homozygote. In this way genetic polymorphism is conserved.

In biology, adaptation has three related meanings. Firstly, it is the dynamic evolutionary process of natural selection that fits organisms to their environment, enhancing their evolutionary fitness. Secondly, it is a state reached by the population during that process. Thirdly, it is a phenotypic trait or adaptive trait, with a functional role in each individual organism, that is maintained and has evolved through natural selection.

<span class="mw-page-title-main">Baldwin effect</span> Effect of learned behavior on evolution

In evolutionary biology, the Baldwin effect describes an effect of learned behaviour on evolution. James Mark Baldwin and others suggested that an organism's ability to learn new behaviours will affect its reproductive success and will therefore have an effect on the genetic makeup of its species through natural selection. It posits that subsequent selection might reinforce the originally learned behaviors, if adaptive, into more in-born, instinctive ones. Though this process appears similar to Lamarckism, that view proposes that living things inherited their parents' acquired characteristics. The Baldwin effect only posits that learning ability, which is genetically based, is another variable in / contributor to environmental adaptation. First proposed during the Eclipse of Darwinism in the late 19th century, this effect has been independently proposed several times, and today it is generally recognized as part of the modern synthesis.

<span class="mw-page-title-main">Unit of selection</span> Biological entity within the hierarchy of biological organization

A unit of selection is a biological entity within the hierarchy of biological organization that is subject to natural selection. There is debate among evolutionary biologists about the extent to which evolution has been shaped by selective pressures acting at these different levels.

<span class="mw-page-title-main">Disruptive selection</span> Natural selection for extreme trait values over intermediate ones

In evolutionary biology, disruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve.

The gene-centered view of evolution, gene's eye view, gene selection theory, or selfish gene theory holds that adaptive evolution occurs through the differential survival of competing genes, increasing the allele frequency of those alleles whose phenotypic trait effects successfully promote their own propagation. The proponents of this viewpoint argue that, since heritable information is passed from generation to generation almost exclusively by DNA, natural selection and evolution are best considered from the perspective of genes.

<span class="mw-page-title-main">Facilitated variation</span>

The theory of facilitated variation demonstrates how seemingly complex biological systems can arise through a limited number of regulatory genetic changes, through the differential re-use of pre-existing developmental components. The theory was presented in 2005 by Marc W. Kirschner and John C. Gerhart.

Ecology and evolutionary biology is an interdisciplinary field of study concerning interactions between organisms and their ever-changing environment, including perspectives from both evolutionary biology and ecology. This field of study includes topics such as the way organisms respond and evolve, as well as the relationships among animals, plants, and micro-organisms, when their habitats change. Ecology and evolutionary biology is a broad field of study that covers various ranges of ages and scales, which can also help us to comprehend human impacts on the global ecosystem and find measures to achieve more sustainable development.

In biology, a cline is a measurable gradient in a single characteristic of a species across its geographical range. Clines usually have a genetic, or phenotypic character. They can show either smooth, continuous gradation in a character, or more abrupt changes in the trait from one geographic region to the next.

<i>Dawkins vs. Gould</i> Book by Kim Sterelny

Dawkins vs. Gould: Survival of the Fittest is a book about the differing views of biologists Richard Dawkins and Stephen Jay Gould by philosopher of biology Kim Sterelny. When published in 2001 it became an international best-seller. A new edition was published in 2007 to include Gould's The Structure of Evolutionary Theory finished shortly before his death in 2002, and recent works by Dawkins. The synopsis below is from the 2007 publication.

In behavioral ecology, adaptive behavior is any behavior that contributes directly or indirectly to an individual's reproductive success, and is thus subject to the forces of natural selection. Examples include favoring kin in altruistic behaviors, sexual selection of the most fit mate, and defending a territory or harem from rivals.

The theoretical foundations of evolutionary psychology are the general and specific scientific theories that explain the ultimate origins of psychological traits in terms of evolution. These theories originated with Charles Darwin's work, including his speculations about the evolutionary origins of social instincts in humans. Modern evolutionary psychology, however, is possible only because of advances in evolutionary theory in the 20th century.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

In evolutionary biology, developmental bias refers to the production against or towards certain ontogenetic trajectories which ultimately influence the direction and outcome of evolutionary change by affecting the rates, magnitudes, directions and limits of trait evolution. Historically, the term was synonymous with developmental constraint, however, the latter has been more recently interpreted as referring solely to the negative role of development in evolution.

References

Science and Selection, David Hull, 2001 (http://assets.cambridge.org/97805216/43399/sample/9780521643399ws.pdf)

Replication and Reproduction, David Hull, 2001 (https://plato.stanford.edu/entries/replication/ )

Color polymorphism in a land snail Cepaea nemoralis (Pulmonata: Helicidae) as viewed by potential avian predators, Adrian Surmacki & Agata Ożarowska-Nowicka & Zuzanna M. Rosin, 2013 (https://link.springer.com/content/pdf/10.1007/s00114-013-1049-y.pdf)

On the Origin of Species, Charles Darwin, 1859