In finance, an interest rate cap is a type of interest rate derivative in which the buyer receives payments at the end of each period in which the interest rate exceeds the agreed strike price. An example of a cap would be an agreement to receive a payment for each month the LIBOR rate exceeds 2.5%.
Similarly, an interest rate floor is a derivative contract in which the buyer receives payments at the end of each period in which the interest rate is below the agreed strike price.
Caps and floors can be used to hedge against interest rate fluctuations. For example, a borrower who is paying the LIBOR rate on a loan can protect himself against a rise in rates by buying a cap at 2.5%. If the interest rate exceeds 2.5% in a given period the payment received from the derivative can be used to help make the interest payment for that period, thus the interest payments are effectively "capped" at 2.5% from the borrowers' point of view.
An interest rate cap is a derivative in which the buyer receives payments at the end of each period in which the interest rate exceeds the agreed strike price. An example of a cap would be an agreement to receive a payment for each month the LIBOR rate exceeds 2.5%. They are most frequently taken out for periods of between 2 and 5 years, although this can vary considerably. [1] Since the strike price reflects the maximum interest rate payable by the purchaser of the cap, it is frequently a whole number integer, for example 5% or 7%. [1] By comparison the underlying index for a cap is frequently a LIBOR rate, or a national interest rate. [1] The extent of the cap is known as its notional profile and can change over the lifetime of a cap, for example, to reflect amounts borrowed under an amortizing loan. [1] The purchase price of a cap is a one-off cost and is known as the premium. [1]
The purchaser of a cap will continue to benefit from any rise in interest rates above the strike price, which makes the cap a popular means of hedging a floating rate loan for an issuer. [1]
The interest rate cap can be analyzed as a series of European call options, known as caplets, which exist for each period the cap agreement is in existence. To exercise a cap, its purchaser generally does not have to notify the seller, because the cap will be exercised automatically if the interest rate exceeds the strike (rate). [1] Note that this automatic exercise feature is different from most other types of options. Each caplet is settled in cash at the end of the period to which it relates. [1]
In mathematical terms, a caplet payoff on a rate L struck at K is
where N is the notional value exchanged and is the day count fraction corresponding to the period to which L applies. For example, suppose that it is January 2007 now and you own a caplet on the six month USD LIBOR rate with an expiry of 1 February 2007 struck at 2.5% with a notional of 1 million dollars. Next, if on 1 February the USD LIBOR rate sets at 3%, then you will receive the following payment:
Customarily the payment is made at the end of the rate period, in this case on 1 August 2007.
An interest rate floor is a series of European put options or floorlets on a specified reference rate, usually LIBOR. The buyer of the floor receives money if on the maturity of any of the floorlets, the reference rate is below the agreed strike price of the floor.
An interest rate collar is the simultaneous purchase of an interest rate cap and sale of an interest rate floor on the same index for the same maturity and notional principal amount.
A reverse interest rate collar is the simultaneous purchase of an interest rate floor and simultaneously selling an interest rate cap.
The size of cap and floor premiums are impacted by a wide range of factors, as follows; the price calculation itself is performed by one of several approaches discussed below.
The simplest and most common valuation of interest rate caplets is via the Black model. Under this model we assume that the underlying rate is distributed log-normally with volatility . Under this model, a caplet on a LIBOR expiring at t and paying at T has present value
where
and
Notice that there is a one-to-one mapping between the volatility and the present value of the option. Because all the other terms arising in the equation are indisputable, there is no ambiguity in quoting the price of a caplet simply by quoting its volatility. This is what happens in the market. The volatility is known as the "Black vol" or implied vol.
As negative interest rates became a possibility and then reality in many countries at around the time of Quantitative Easing, so the Black model became increasingly inappropriate (as it implies a zero probability of negative interest rates). Many substitute methodologies have been proposed, including shifted log-normal, normal and Markov-Functional, though a new standard is yet to emerge. [2]
It can be shown that a cap on a LIBOR from t to T is equivalent to a multiple of a t-expiry put on a T-maturity bond. Thus if we have an interest rate model in which we are able to value bond puts, we can value interest rate caps. Similarly a floor is equivalent to a certain bond call. Several popular short-rate models, such as the Hull–White model have this degree of tractability. Thus we can value caps and floors in those models.
Caps based on an underlying rate (like a Constant Maturity Swap Rate) cannot be valued using simple techniques described above. The methodology for valuation of CMS Caps and Floors can be referenced in more advanced papers.
{{cite web}}
: CS1 maint: archived copy as title (link)In finance, an interest rate swap (IRS) is an interest rate derivative (IRD). It involves exchange of interest rates between two parties. In particular it is a "linear" IRD and one of the most liquid, benchmark products. It has associations with forward rate agreements (FRAs), and with zero coupon swaps (ZCSs).
In finance, a forward rate agreement (FRA) is an interest rate derivative (IRD). In particular it is a linear IRD with strong associations with interest rate swaps (IRSs).
In finance, the style or family of an option is the class into which the option falls, usually defined by the dates on which the option may be exercised. The vast majority of options are either European or American (style) options. These options—as well as others where the payoff is calculated similarly—are referred to as "vanilla options". Options where the payoff is calculated differently are categorized as "exotic options". Exotic options can pose challenging problems in valuation and hedging.
In finance, a convertible bond, convertible note, or convertible debt is a type of bond that the holder can convert into a specified number of shares of common stock in the issuing company or cash of equal value. It is a hybrid security with debt- and equity-like features. It originated in the mid-19th century, and was used by early speculators such as Jacob Little and Daniel Drew to counter market cornering.
A swaption is an option granting its owner the right but not the obligation to enter into an underlying swap. Although options can be traded on a variety of swaps, the term "swaption" typically refers to options on interest rate swaps.
In finance, a swap is an agreement between two counterparties to exchange financial instruments, cashflows, or payments for a certain time. The instruments can be almost anything but most swaps involve cash based on a notional principal amount.
Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
In financial mathematics, the Hull–White model is a model of future interest rates. In its most generic formulation, it belongs to the class of no-arbitrage models that are able to fit today's term structure of interest rates. It is relatively straightforward to translate the mathematical description of the evolution of future interest rates onto a tree or lattice and so interest rate derivatives such as bermudan swaptions can be valued in the model.
In finance, a foreign exchange option is a derivative financial instrument that gives the right but not the obligation to exchange money denominated in one currency into another currency at a pre-agreed exchange rate on a specified date. See Foreign exchange derivative.
A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.
In finance, a bond option is an option to buy or sell a bond at a certain price on or before the option expiry date. These instruments are typically traded OTC.
The notional amount on a financial instrument is the nominal or face amount that is used to calculate payments made on that instrument. This amount generally does not change and is thus referred to as notional.
In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.
In finance, a lattice model is a mathematical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options, a typical application would correspond to the pricing of an American-style option, where a decision to exercise is allowed at any time up to the maturity. A continuous model, on the other hand, such as the standard Black–Scholes one, would only allow for the valuation of European options, where exercise is limited to the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, because of path dependence in the payoff. Traditional Monte Carlo methods for option pricing fail to account for optimal decisions to terminate the derivative by early exercise, but some methods now exist for solving this problem.
The LIBOR market model, also known as the BGM Model is a financial model of interest rates. It is used for pricing interest rate derivatives, especially exotic derivatives like Bermudan swaptions, ratchet caps and floors, target redemption notes, autocaps, zero coupon swaptions, constant maturity swaps and spread options, among many others. The quantities that are modeled, rather than the short rate or instantaneous forward rates are a set of forward rates, which have the advantage of being directly observable in the market, and whose volatilities are naturally linked to traded contracts. Each forward rate is modeled by a lognormal process under its forward measure, i.e. a Black model leading to a Black formula for interest rate caps. This formula is the market standard to quote cap prices in terms of implied volatilities, hence the term "market model". The LIBOR market model may be interpreted as a collection of forward LIBOR dynamics for different forward rates with spanning tenors and maturities, each forward rate being consistent with a Black interest rate caplet formula for its canonical maturity. One can write the different rates' dynamics under a common pricing measure, for example the forward measure for a preferred single maturity, and in this case forward rates will not be lognormal under the unique measure in general, leading to the need for numerical methods such as Monte Carlo simulation or approximations like the frozen drift assumption.
In finance, a collar is an option strategy that limits the range of possible positive or negative returns on an underlying to a specific range. A collar strategy is used as one of the ways to hedge against possible losses and it represents long put options financed with short call options. The collar combines the strategies of the protective put and the covered call.
In finance, inflation derivative refers to an over-the-counter and exchange-traded derivative that is used to transfer inflation risk from one counterparty to another. See Exotic derivatives.
In finance, an option is a contract which conveys to its owner, the holder, the right, but not the obligation, to buy or sell a specific quantity of an underlying asset or instrument at a specified strike price on or before a specified date, depending on the style of the option.
A dual-currency note (DC) pays coupons in the investor's domestic currency with the notional in the issuer's domestic currency. A reverse dual-currency note (RDC) is a note which pays a foreign interest rate in the investor's domestic currency. A power reverse dual-currency note (PRDC) is a structured product where an investor is seeking a better return and a borrower a lower rate by taking advantage of the interest rate differential between two economies. The power component of the name denotes higher initial coupons and the fact that coupons rise as the foreign exchange rate depreciates. The power feature comes with a higher risk for the investor, which characterizes the product as leveraged carry trade. Cash flows may have a digital cap feature where the rate gets locked once it reaches a certain threshold. Other add-on features include barriers such as knockouts and cancel provision for the issuer. PRDCs are part of the wider Structured Notes Market.
In mathematical finance, convexity refers to non-linearities in a financial model. In other words, if the price of an underlying variable changes, the price of an output does not change linearly, but depends on the second derivative of the modeling function. Geometrically, the model is no longer flat but curved, and the degree of curvature is called the convexity.