Isolated-phase bus

Last updated

In electrical engineering, isolated-phase bus (IPB), also known as phase-isolated bus (PIB) in some countries, is a method of construction for circuits carrying very large currents, typically between a generator and its step-up transformer in a steam or large hydroelectric power plant.

Isolated phase bus during installation at the Bui Dam Ghana. Segments of the bus are temporarily supported by scaffolding. The interior aluminum conductors are temporarily braced for installation. The inner conductors and outer enclosure will be welded to form a unit. Inside the enclosure, the inner conductor is supported by polymer insulators; a small hatch for access to the insulator is visible. Each phase is separated. Isolated phase bus Bui dam Ghana.jpg
Isolated phase bus during installation at the Bui Dam Ghana. Segments of the bus are temporarily supported by scaffolding. The interior aluminum conductors are temporarily braced for installation. The inner conductors and outer enclosure will be welded to form a unit. Inside the enclosure, the inner conductor is supported by polymer insulators; a small hatch for access to the insulator is visible. Each phase is separated.

Each phase current is carried on a separate conductor, enclosed in a separate grounded metal housing. [1] Conductors are usually hollow aluminum tubes or aluminum bars, supported within the housing on porcelain or polymer insulators. The metal housings are electrically connected so that induced current, nearly of the magnitude of the phase current, can flow through the housing, in the opposite direction from the phase current. The magnetic field produced by this current nearly exactly cancels the magnetic field produced by the phase current, so there is almost no external magnetic field produced. This also limits the amount of force produced between conductors during a short circuit. The external housings of the conductors remain at a low potential with respect to earth ground and are usually bonded to ground.

By enclosing the conductors in separate housings a high degree of protection from two-phase and three-phase faults is obtained. Almost any fault would instead be a single-phase earth fault which does not produce a large fault current. The conductors between the generator and the first circuit breaker are even more important to protect against two- and three-phase faults because there is no breaker that can stop the fault current from the generator. While most modern circuit breakers will interrupt the fault current in less than 50 ms, the fault current from the generator will take several seconds to interrupt because the field current in the rotor takes this amount of time to discharge. The consequences of a two- or three-phase fault between the generator and the first circuit breaker are therefore much more serious and often result in severe damage to the busbars and nearby equipment.

Isolated-phase bus is made in ratings from 3000 amperes to 45,000 amperes, and rated for voltages from 5000 volts up to about 35,000 volts. In the larger current ratings, dry air is forced through the enclosures and within the tubular conductors for forced-air cooling of the conductors. The cooling air is recirculated through a heat exchanger. Some items of switchgear, such as circuit breakers and isolating switches, are made in housings compatible with the isolated-phase bus. Accessories such as instrument transformers, surge arresters, and capacitors are also made in compatible housings. Due to the expense of its construction and the energy loss, isolated-phase bus is usually used in short segments; a large underground powerhouse may have isolated-phase bus up to about 250 metres or so to connect generators to transformers in a cavern.

Forced-air cooling can approximately double the rating over the same size conductors used in a self-cooled system. The extra cost of losses and cooling fan power consumption must be balanced against the lower capital cost of the bus. [2]

Various forms of flexible terminals, expansion joints, and weatherproof or fire-proof bushings and terminals are used with isolated-phase bus. Some types of apparatus such as disconnecting switches, circuit breakers, and instrument transformers are made in enclosures that can be welded to become an integral part of the isolated-phase bus system. Isolated-phase bus is usually custom manufactured for a particular project and requires accurate dimensions of the connected equipment for manufacturing.

A smaller type of isolated-phase bus is manufactured for direct-current circuits; this may be used in the field circuit of a generator.

Currently, the isolated-phase bus world record current is 52,000 A, for bus manufactured by Alstom Power (since 2015 General Electric Power) and installed at the Civaux Nuclear Power Plant, in 1997.

Other types of bus are:

These are used at lower ratings or where adequate protection of the circuit by overcurrent devices is possible.

See also

Related Research Articles

Transformer Passive electrical device that transfers electrical energy from one electrical circuit to another, or multiple circuits

A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

Circuit breaker Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by an overcurrent or short circuit. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

Electrical substation Part of an electrical generation, transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages.

Residual-current device Electrical safety device used in household wiring

A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.

Fuse (electrical) Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated it is an open circuit, and must be replaced or rewired, depending on its type.

A distribution board is a component of an electricity supply system that divides an electrical power feed into subsidiary circuits while providing a protective fuse or circuit breaker for each circuit in a common enclosure. Normally, a main switch, and in recent boards, one or more residual-current devices (RCDs) or residual current breakers with overcurrent protection (RCBOs) are also incorporated.

Electric switchboard

An electric switchboard is a device that distributes electricity from one or more sources of supply to several smaller load circuits. It is an assembly of one or more panels, each of which contains switching devices for the protection and control of circuits fed from the switchboard. Several manufacturers make switchboards used in industry, commercial buildings, telecommunication facilities, oil and gas plants, data centers, health care, and other buildings, and onboard large ships. A switchboard is divided into different interconnected sections, generally consisting of a main section and a distribution section. These two sections are sometimes replaced by a combination section, which is a section that can fulfill the roles of both aforementioned sections. Switchboards can also sometimes come with an auxiliary section that is used to house devices that cannot be housed in the same section as other devices.

Busbar Strip inside switchgear for local high current distribution

In electric power distribution, a busbar is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are also used to connect high voltage equipment at electrical switchyards, and low voltage equipment in battery banks. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars. These features allow sufficient cooling of the conductors, and the ability to tap in at various points without creating a new joint.

Electrical wiring Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

The prospective short-circuit current (PSCC), available fault current, or short-circuit making current is the highest electric current which can exist in a particular electrical system under short-circuit conditions. It is determined by the voltage and impedance of the supply system. It is of the order of a few thousand amperes for a standard domestic mains electrical installation, but may be as low as a few milliamperes in a separated extra-low voltage (SELV) system or as high as hundreds of thousands of amps in large industrial power systems.

Current transformer Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

Switchgear Control gear of an electric power system

In an electric power system, switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

This is an alphabetical list of articles pertaining specifically to electrical and electronics engineering. For a thematic list, please see List of electrical engineering topics. For a broad overview of engineering, see List of engineering topics. For biographies, see List of engineers.

Arc flash Heat and light produced during an electrical arc fault

An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.

In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

Transformer types Overview of electrical transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

Electric power system Network of electrical component deployed to generate, transmit & distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.

Instrument transformers are high accuracy class electrical devices used to isolate or transform voltage or current levels. The most common usage of instrument transformers is to operate instruments or metering from high voltage or high current circuits, safely isolating secondary control circuitry from the high voltages or currents. The primary winding of the transformer is connected to the high voltage or high current circuit, and the meter or relay is connected to the secondary circuit.

Bus duct Low resistance electrical conductor for high current transmission and distribution

In electric power distribution, a bus duct is a sheet metal duct or also cast resin insulated containing either copper or aluminium busbars for the purpose of conducting a substantial current of electricity. It is an alternative means of conducting electricity to power cables or cable bus.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition, McGraw-Hill, New York, 1978, ISBN   0-07-020974-X pages 10-87 through 10-89
  2. "Archived copy". www.specfabipb.com. Archived from the original on 3 February 2013. Retrieved 6 June 2022.{{cite web}}: CS1 maint: archived copy as title (link)