Busbar

Last updated
Copper busbar in a panel Busbar in an LT panel.png
Copper busbar in a panel
1500 ampere copper busbars within a power distribution rack for a large building Busbars.jpg
1500 ampere copper busbars within a power distribution rack for a large building

In electric power distribution, a busbar (also bus bar) is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are also used to connect high voltage equipment at electrical switchyards, and low-voltage equipment in battery banks. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars. These features allow sufficient cooling of the conductors, and the ability to tap in at various points without creating a new joint.

Contents

Design and placement

The busbar's material composition and cross-sectional size determine the maximum current it can safely carry. Busbars can have a cross-sectional area of as little as 10 square millimetres (0.016 sq in), but electrical substations may use metal tubes 50 millimetres (2.0 in) in diameter or more as busbars. Aluminium smelters use very large busbars to carry tens of thousands of amperes to the electrochemical cells that produce aluminium from molten salts.

Busbars are produced in a variety of shapes, including flat strips, solid bars and rods, and are typically composed of copper, brass or aluminium as solid or hollow tubes. [1] Some of these shapes allow heat to dissipate more efficiently due to their high surface area to cross-sectional area ratio. The skin effect makes 50–60 Hz AC busbars more than about 8 millimetres (0.31 in) thickness inefficient, so hollow or flat shapes are prevalent in higher-current applications. A hollow section also has higher stiffness than a solid rod of equivalent current-carrying capacity, which allows a greater span between busbar supports in outdoor electrical switchyards.

A busbar must be sufficiently rigid to support its own weight, and forces imposed by mechanical vibration and possibly earthquakes, as well as accumulated precipitation in outdoor exposures. In addition, thermal expansion from temperature changes induced by ohmic heating and ambient temperature variations, and magnetic forces induced by large currents, must be considered. To address these concerns, flexible bus bars, typically a sandwich of thin conductor layers, were developed. They require a structural frame or cabinet for their installation.

Distribution boards split the electrical supply into separate circuits at one location. Busways, or bus ducts, are long busbars with protective covers. Rather than branching from the main supply at one location, they allow new circuits to branch off anywhere along the busway.

A busbar may be either supported on insulators, or wrapped in insulation. They are protected from accidental contact either by a metal earthed enclosure or by elevation out of normal reach. [2] Insulated bus bars are used in busways listed to UL 857 standards. [3] Power neutral busbars may also be insulated because it is not guaranteed that the potential between power neutral and safety grounding is always zero. Earthing (safety grounding) busbars are typically bare and bolted directly onto any metal chassis of their enclosure. They may be enclosed in a metal housing, in the form of a bus duct or busway, segregated-phase bus, or isolated-phase bus.

Busbars may be connected to each other and to electrical apparatus by bolting, clamping or welding. Joints between high-current bus sections often have precisely machined matching surfaces that are silver-plated to reduce contact resistance. At extra high voltages (more than 300 kV) in outdoor buses, corona discharge around the connections becomes a source of radio-frequency interference and power loss, so special connection fittings designed for these voltages are used.

See also

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

<span class="mw-page-title-main">Electrical conductor</span> Object or material which allows the flow of electric charge with little energy loss

In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively charged electrons generates electric current, positively charged holes, and positive or negative ions in some cases.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

A distribution board is a component of an electricity supply system that divides an electrical power feed into subsidiary circuits while providing a protective fuse or circuit breaker for each circuit in a common enclosure. Normally, a main switch, and in recent boards, one or more residual-current devices (RCDs) or residual current breakers with overcurrent protection (RCBOs) are also incorporated.

<span class="mw-page-title-main">Electric switchboard</span> A piece of equipment that distributes electric power

An electric switchboard is a piece of equipment that distributes electric power from one or more sources of supply to several smaller load circuits. It is an assembly of one or more panels, each of which contains switching devices for the protection and control of circuits fed from the switchboard. Several manufacturers make switchboards used in industry, commercial buildings, telecommunication facilities, oil and gas plants, data centers, health care, and other buildings, and onboard large ships. A switchboard is divided into different interconnected sections, generally consisting of a main section and a distribution section. These two sections are sometimes replaced by a combination section, which is a section that can fulfill the roles of both of the aforementioned sections. Switchboards can also sometimes come with an auxiliary section that is used to house devices that cannot be housed in the same section as other devices.

<span class="mw-page-title-main">Electrical wiring</span> Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

<span class="mw-page-title-main">Power cable</span> Bundle of wires for transmitting electricity

A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B.

<span class="mw-page-title-main">Switchgear</span> Control gear of an electric power system

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Ampacity is a portmanteau for ampere capacity, defined by United States National Electrical Codes. Ampacity is defined as the maximum current, in amperes, that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.

<span class="mw-page-title-main">Bushing (electrical)</span> Hollow electrical insulator

In electric power, a bushing is a hollow electrical insulator that allows an electrical conductor to pass safely through a conducting barrier such as the case of a transformer or circuit breaker without making electrical contact with it. Bushings are typically made from porcelain, though other insulating materials are also used.

<span class="mw-page-title-main">Magnet wire</span> Coated wire for construction of coils

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, generators, speakers, hard disk head actuators, electromagnets, electric guitar pickups, and other applications that require tight coils of insulated wire.

<span class="mw-page-title-main">Isolated-phase bus</span>

In electrical engineering, isolated-phase bus (IPB), also known as phase-isolated bus (PIB) in some countries, is a method of construction for circuits carrying very large currents, typically between a generator and its step-up transformer in a steam or large hydroelectric power plant.

Busway may refer to:

In electrical power distribution, armoured cable usually means steel wire armoured cable (SWA) which is a hard-wearing power cable designed for the supply of mains electricity. It is one of a number of armoured electrical cables – which include 11 kV Cable and 33 kV Cable – and is found in underground systems, power networks and cable ducting.

<span class="mw-page-title-main">Copper conductor</span> Electrical wire or other conductor made of copper

Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor.

<span class="mw-page-title-main">Bus duct</span> Low resistance electrical conductor for high current transmission and distribution

In electric power distribution, a bus duct typically uses sheet metal, welded metal or cast resin to contain and isolate copper or aluminium busbars for the purpose of conducting a substantial current of electricity. It is an alternative means of conducting electricity to power cables or cable bus.

<span class="mw-page-title-main">Electrical busbar system</span> Modular approach to electrical wiring

Electrical busbar systems are a modular approach to electrical wiring, where instead of a standard cable wiring to every single electrical device, the electrical devices are mounted onto an adapter which is directly fitted to a current carrying busbar. This modular approach is used in distribution boards, automation panels and other kinds of installation in an electrical enclosure.

References

  1. "Copper for Busbars: Guidance for Design and Installation" (PDF). CopperAlliance.org.uk. Archived (PDF) from the original on 19 February 2018. Retrieved 30 October 2017.
  2. "What is a Busbar & Other FAQs on Electrical Copper Busbars". Starlinepower.com. Archived from the original on 30 October 2017. Retrieved 30 October 2017.
  3. "Power Drops / Distribution". busstrut.com. Retrieved 13 January 2024.
  4. "IEC 60050 – International Electrotechnical Vocabulary – Details for IEV number 605-02-22: "flexible busbar"". Archived from the original on 2019-01-28. Retrieved 2019-01-27.
  5. "IEC 60050 – International Electrotechnical Vocabulary – Details for IEV number 605-02-21: "rigid busbar"". Archived from the original on 2019-01-28. Retrieved 2019-01-27.

Further reading