Precipitation types

Last updated
Typical precipitation types associated with a warm front advancing over frigid air Precipitation by type.png
Typical precipitation types associated with a warm front advancing over frigid air
Precipitation in the form of a sunshower Flaming Rain at Sunset.jpg
Precipitation in the form of a sunshower

In meteorology, the different types of precipitation often include the character, formation, or phase of the precipitation which is falling to ground level. There are three distinct ways that precipitation can occur. Convective precipitation is generally more intense, and of shorter duration, than stratiform precipitation. Orographic precipitation occurs when moist air is forced upwards over rising terrain and condenses on the slope, such as a mountain.

Contents

Precipitation can fall in either liquid or solid phases, is mixed with both, or transition between them at the freezing level. Liquid forms of precipitation include rain and drizzle and dew. Rain or drizzle which freezes on contact with a surface within a subfreezing air mass gains the preceding adjective "freezing", becoming the known freezing rain or freezing drizzle. Slush is a mixture of both liquid and solid precipitation. Frozen forms of precipitation include snow, ice crystals, ice pellets (sleet), hail, and graupel. Their respective intensities are classified either by rate of precipitation, or by visibility restriction.

Phases

Precipitation falls in many forms, or phases. They can be subdivided into:

The parenthesized letters are the shortened METAR codes for each phenomenon. [1]

Mechanisms

Precipitation occurs when evapotranspiration takes place and local air becomes saturated with water vapor, and so can no longer maintain the level of water vapor in gaseous form, which creates clouds. This occurs when less dense moist air cools, usually when an air mass rises through the atmosphere to higher and cooler altitudes. However, an air mass can also cool without a change in altitude (e.g. through radiative cooling, or ground contact with cold terrain).

Convective precipitation occurs when air rises vertically through the (temporarily) self-sustaining mechanism of convection. Stratiform precipitation occurs when large air masses rise diagonally as larger-scale winds and atmospheric dynamics force them to move over each other. Orographic precipitation is similar, except the upwards motion is forced when a moving air mass encounters the rising slope of a landform such as a mountain ridge or slope.

Convectional

A violent electrical storm results from convective cumulonimbus clouds. Desert Electric.jpg
A violent electrical storm results from convective cumulonimbus clouds.

Convection occurs when the Earth's surface, especially within a conditionally unstable or moist atmosphere, becomes heated more than its surroundings and in turn leading to significant evapotranspiration. Convective rain and light precipitation are the result of large convective clouds, for example cumulonimbus or cumulus congestus clouds. In the initial stages of this precipitation, it generally falls as showers with a smaller area and a rapidly changing intensity. Convective precipitation falls over a certain area for a relatively short time, as convective clouds have limited vertical and horizontal extent and do not conserve much water. Most precipitation in the tropics appears to be convective; however, it has been suggested that stratiform and convective precipitation often both occur within the same complex of convection-generated cumulonimbus. [2] [3]

Graupel and hail indicate convection when either or both are present at the surface. They are indicative that some form of precipitation forms and exists at the freezing level, a varying point in the atmosphere in which the temperature is 0°C. [4] In mid-latitude regions, convective precipitation is often associated with cold fronts where it is often found behind the front, occasionally initiating a squall line.

Cyclonic

A weather front is the boundary of two air masses with different characteristics Warmfrontai.svg
A weather front is the boundary of two air masses with different characteristics

Frontal precipitation is the result of frontal systems surrounding extratropical cyclones or lows, which form when warm and tropical air meets cooler, subpolar air. Frontal precipitation typically falls out from nimbostratus clouds. [5]

When masses of air with different densities (moisture and temperature characteristics) meet, the less dense warmer air overrides the more dense colder air. The warmer air is forced to rise and, if conditions are right, creates an effect of saturation and condensation, causing precipitation. In turn, precipitation can enhance the temperature and dewpoint contrast along a frontal boundary, creating more precipitation while the front lasts. Passing weather fronts often result in sudden changes in environmental temperature, and in turn the humidity and pressure in the air at ground level as different air masses switch the local weather.

Warm fronts occur where advancing warm air pushes out a previously extant cold air mass. The warm air overrides the cooler air and moves upward. Warm fronts are followed by extended periods of light rain and drizzle due to the fact that, after the warm air rises above the cooler air (which remains on the ground), it gradually cools due to the air's expansion while being lifted, which forms clouds and leads to precipitation.

Cold fronts occur when an advancing mass of cooler air dislodges and plows through a mass of warm air. This type of transition is sharper and faster than warm fronts, since cold air is more dense than warm air and sinks through in gravity's favor. Precipitation duration is often shorter and generally more intense than that which occurs ahead of warm fronts.

A wide variety of weather can be found along an occluded front, usually found near anticyclonic activity, but usually their passage is associated with a drying of the air mass.

Orographic

Orographic precipitation occurs when moist air is forced upwards by terrain. Steigungsregen.jpg
Orographic precipitation occurs when moist air is forced upwards by terrain.

Orographic or relief rainfall is caused when masses of air are forced up the side of elevated land formations, such as large mountains or plateaus (often referred to as an upslope effect). The lift of the air up the side of the mountain results in adiabatic cooling with altitude, and ultimately condensation and precipitation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds), a more moist climate usually prevails on the windward side of a mountain than on the leeward (downwind) side, as wind carries moist air masses and orographic precipitation. Moisture is precipitated and removed by orographic lift, leaving drier air (see Foehn) on the descending (generally warming), leeward side where a rain shadow is observed. [6]

Post orographic lift isolated towering vertical thunderhead shower in Mojave Desert, western USA Towering Verticle Thunderhead.jpg
Post orographic lift isolated towering vertical thunderhead shower in Mojave Desert, western USA

In Hawaii, Mount Waiʻaleʻale (Waiʻaleʻale), on the island of Kauai, is notable for its extreme rainfall. It currently has the highest average annual rainfall on Earth, with approximately 460 inches (12,000 mm) per year. [7] Storm systems affect the region with heavy rains during winter, between October and March. Local climates vary considerably on each island due to their topography, divisible into windward (Koʻolau) and leeward (Kona) regions based upon location relative to the higher surrounding mountains. Windward sides face the east-to-northeast trade winds and receive much more clouds and rainfall; leeward sides are drier and sunnier, with less rain and less cloud cover. [8] On the island of Oahu, high amounts of clouds and often rain can usually be observed around the windward mountain peaks, while the southern parts of the island (including most of Honolulu and Waikiki) receive dramatically less rainfall throughout the year.

In South America, the Andes mountain range blocks Pacific Ocean winds and moisture that arrives on the continent, resulting in a desert-like climate just downwind across western Argentina. [9] The Sierra Nevada range creates the same drying effect in North America, causing the Great Basin Desert, [10] Mojave Desert, and Sonoran Desert.

Intensity

Precipitation is measured using a rain gauge, and more recently remote sensing techniques such as a weather radar. When classified according to the rate of precipitation, rain can be divided into categories. Light rain describes rainfall which falls at a rate of between a trace and 2.5 millimetres (0.098 in) per hour. Moderate rain describes rainfall with a precipitation rate of between 2.6 millimetres (0.10 in) and 7.6 millimetres (0.30 in) per hour. Heavy rain describes rainfall with a precipitation rate above 7.6 millimetres (0.30 in) per hour, and violent rain has a rate more than 50 millimetres (2.0 in) per hour. [11]

Snowfall intensity is classified in terms of visibility instead. When the visibility is over 1 kilometre (0.62 mi), snow is determined to be light. Moderate snow describes snowfall with visibility restrictions between .5 kilometres (0.31 mi) and 1 kilometre (0.62 mi). Heavy snowfall describes conditions when visibility is restricted below .5 kilometres (0.31 mi). [12]

See also

Related Research Articles

<span class="mw-page-title-main">Fog</span> Atmospheric phenomenon

Fog is a visible aerosol consisting of tiny water droplets or ice crystals suspended in the air at or near the Earth's surface. Fog can be considered a type of low-lying cloud usually resembling stratus, and is heavily influenced by nearby bodies of water, topography, and wind conditions. In turn, fog affects many human activities, such as shipping, travel, and warfare.

<span class="mw-page-title-main">Surface weather analysis</span> Type of weather map

Surface weather analysis is a special type of weather map that provides a view of weather elements over a geographical area at a specified time based on information from ground-based weather stations.

<span class="mw-page-title-main">Orography</span> Study of the topographic relief of mountains

Orography is the study of the topographic relief of mountains, and can more broadly include hills, and any part of a region's elevated terrain. Orography falls within the broader discipline of geomorphology. The term orography comes from the Greek: όρος, hill, γραφία, to write.

<span class="mw-page-title-main">Stratus cloud</span> Type of cloud

Stratus clouds are low-level clouds characterized by horizontal layering with a uniform base, as opposed to convective or cumuliform clouds formed by rising thermals. The term stratus describes flat, hazy, featureless clouds at low altitudes varying in color from dark gray to nearly white. The word stratus comes from the Latin prefix strato-, meaning "layer". Stratus clouds may produce a light drizzle or a small amount of snow. These clouds are essentially above-ground fog formed either through the lifting of morning fog or through cold air moving at low altitudes. Some call these clouds "high fog" for their fog-like form.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">Orographic lift</span> Air mass forced upwards as it moves over rising terrain

Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain. As the air mass gains altitude it quickly cools down adiabatically, which can raise the relative humidity to 100% and create clouds and, under the right conditions, precipitation.

<span class="mw-page-title-main">Rain shadow</span> Leeward side of a mountain range

A rain shadow is an area of significantly reduced rainfall behind a mountainous region, on the side facing away from prevailing winds, known as its leeward side.

<span class="mw-page-title-main">Warm front</span> Boundary of advancing mass of warm air

A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall generally increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

<span class="mw-page-title-main">Cloud physics</span> Study of the physical processes in atmospheric clouds

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water, tiny crystals of ice, or both, along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

<span class="mw-page-title-main">Weather front</span> Boundary separating two masses of air of different densities

A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.

<span class="mw-page-title-main">Rainband</span> Cloud and precipitation structure

A rainband is a cloud and precipitation structure associated with an area of rainfall which is significantly elongated. Rainbands can be stratiform or convective, and are generated by differences in temperature. When noted on weather radar imagery, this precipitation elongation is referred to as banded structure. Rainbands within tropical cyclones are curved in orientation. Rainbands of tropical cyclones contain showers and thunderstorms that, together with the eyewall and the eye, constitute a hurricane or tropical storm. The extent of rainbands around a tropical cyclone can help determine the cyclone's intensity.

<span class="mw-page-title-main">Mesoscale convective system</span> Complex of thunderstorms organized on a larger scale

A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and mesoscale convective complexes (MCCs), and generally forms near weather fronts. The type that forms during the warm season over land has been noted across North and South America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.

<span class="mw-page-title-main">Convective instability</span> Ability of an air mass to resist vertical motion

In meteorology, convective instability or stability of an air mass refers to its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, vertical air movements tend to become larger, resulting in turbulent airflow and convective activity. Instability can lead to significant turbulence, extensive vertical clouds, and severe weather such as thunderstorms.

<span class="mw-page-title-main">Air-mass thunderstorm</span> Thunderstorm that is generally weak and usually not severe

An air-mass thunderstorm, also called an "ordinary", "single cell", "isolated" or "garden variety" thunderstorm, is a thunderstorm that is generally weak and usually not severe. These storms form in environments where at least some amount of Convective Available Potential Energy (CAPE) is present, but with very low levels of wind shear and helicity. The lifting source, which is a crucial factor in thunderstorm development, is usually the result of uneven heating of the surface, though they can be induced by weather fronts and other low-level boundaries associated with wind convergence. The energy needed for these storms to form comes in the form of insolation, or solar radiation. Air-mass thunderstorms do not move quickly, last no longer than an hour, and have the threats of lightning, as well as showery light, moderate, or heavy rainfall. Heavy rainfall can interfere with microwave transmissions within the atmosphere.

<span class="mw-page-title-main">Rain</span> Precipitation in the form of water droplets

Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.

<span class="mw-page-title-main">Cold front</span> Leading edge of a cooler mass of air

A cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone, at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (54 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and are weakest during the summer.

<span class="mw-page-title-main">Climate of Hawaii</span>

The U.S. state of Hawaiʻi, which covers the Hawaiian Islands, is tropical but it experiences many different climates, depending on altitude and surroundings. The island of Hawaiʻi for example hosts 4 climate groups on a surface as small as 4,028 square miles (10,430 km2) according to the Köppen climate types: tropical, arid, temperate and polar. When counting also the Köppen sub-categories – notably including the very rare cold-summer mediterranean climate – the island of Hawaiʻi hosts 10 climate zones. The islands receive most rainfall from the trade winds on their north and east flanks as a result of orographic precipitation. Coastal areas are drier, especially the south and west side or leeward sides.

Tropical convective clouds play an important part in the Earth's climate system. Convection and release of latent heat transports energy from the surface into the upper atmosphere. Clouds have a higher albedo than the underlying ocean, which causes more incoming solar radiation to be reflected back to space. Since the tops of tropical systems are much cooler than the surface of the Earth, the presence of high convective clouds cools the climate system.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

<span class="mw-page-title-main">Shower (precipitation)</span> Sudden and brief rain or snowfall

A shower is a mode of precipitation characterized by an abrupt start and end and by rapid variations in intensity. Often strong and short-lived, it comes from convective clouds, like cumulus congestus. A shower will produce rain if the temperature is above the freezing point in the cloud, or snow / ice pellets / snow pellets / hail if the temperature is below it at some point. In a meteorological observation, such as the METAR, they are noted SH giving respectively SHRA, SHSN, SHPL, SHGS and SHGR.

References

  1. "METAR Conversion Card". National Weather Service . Retrieved 2012-12-12.
  2. B. Geerts. Convective and stratiform rainfall in the tropics. Retrieved on 2007-11-27.
  3. Houze, Robert (October 1997). "Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?". Bulletin of the American Meteorological Society. 78 (10): 2179–2196. doi: 10.1175/1520-0477(1997)078<2179:spiroc>2.0.co;2 . ISSN   1520-0477.
  4. Glossary of Meteorology. Graupel. Archived 2008-03-08 at the Wayback Machine Retrieved on 2009-01-02.
  5. Glossary of Meteorology (2009). "Stratiform precipitation area". American Meteorological Society. Archived from the original on 2011-06-06. Retrieved 2009-07-12.
  6. Physical Geography. CHAPTER 8: Introduction to the Hydrosphere (e). Cloud Formation Processes. Retrieved on 2009-01-01.
  7. Diana Leone Rain supreme. Retrieved on 2008-03-19.
  8. Western Regional Climate Center. Climate of Hawaii. Retrieved on 2008-03-19.
  9. Paul E. Lydolph. The Climate of the Earth. Retrieved on 2009-01-02.
  10. Michael A. Mares. Encyclopedia of Deserts. Retrieved on 2009-01-02.
  11. Glossary of Meteorology (2012). "Rain". American Meteorological Society . Retrieved 2014-11-13.
  12. Glossary of Meteorology (2009). "Snow". American Meteorological Society. Archived from the original on 2009-02-20. Retrieved 2009-06-28.