Part of a series on |
Power engineering |
---|
Electric power conversion |
Electric power infrastructure |
Electric power systems components |
A grid-tie inverter converts direct current (DC) into an alternating current (AC) suitable for injecting into an electrical power grid, at the same voltage and frequency of that power grid. Grid-tie inverters are used between local electrical power generators: solar panel, wind turbine, hydro-electric, and the grid. [1]
To inject electrical power efficiently and safely into the grid, grid-tie inverters must accurately match the voltage, frequency and phase of the grid sine wave AC waveform.
Electricity companies, in some countries, pay for electrical power that is injected into the electricity utility grid. Payment is arranged in several ways.
With net metering the electricity company pays for the net power injected into the grid, as recorded by a meter on the customer's premises. For example, a customer may consume 400 kilowatt-hours over a month and may return 500 kilowatt-hours to the grid in the same month. In this case the electricity company would pay for the 100 kilowatt hours balance of power fed back into the grid. In the US, net metering policies vary by jurisdiction.
Feed-in tariff, based on a contract with a distribution company or other power authority, is where the customer is paid for electrical power injected into the grid.
In the United States, grid-interactive power systems are specified in the National Electric Code (NEC), which also mandates requirements for grid-interactive inverters.
Grid-tie inverters convert DC electrical power into AC power suitable for injecting into the electric utility company grid. The grid tie inverter (GTI) must match the phase of the grid and maintain the output voltage slightly higher than the grid voltage at any instant. A high-quality modern grid-tie inverter has a fixed unity power factor, which means its output voltage and current are perfectly lined up, and its phase angle is within 1° of the AC power grid. The inverter has an internal computer that senses the current AC grid waveform, and outputs a voltage to correspond with the grid. However, supplying reactive power to the grid might be necessary to keep the voltage in the local grid inside allowable limits.
Grid-tie inverters are designed to disconnect quickly from the grid if the utility grid goes down. In the United States, there is an NEC requirement [2] that in the event of a blackout, the grid tie inverter shut down to prevent the electricity it generates from harming persons repairing the power grid.
Properly configured, a grid tie inverter enables a building to use an alternative power generation system such as solar or wind power without extensive rewiring and without batteries. If the system produces insufficient power, the utility grid makes up the deficit.
Grid-tie inverters include conventional low-frequency types with transformer coupling, newer high-frequency types, also with transformer coupling, and transformerless types. [3] Instead of converting direct current directly into AC suitable for the grid, high-frequency transformers types use a computer process to convert the power to a high-frequency and then back to DC and then to the final AC output voltage suitable for the grid. [4]
Transformerless inverters, which are popular in Europe, are lighter, smaller, and more efficient than inverters with transformers. But transformerless inverters have been slow to enter the US market because of concerns that transformerless inverters, which do not have galvanic isolation between the DC side and grid, could inject dangerous DC voltages and currents into the grid under fault conditions. [5]
However, since 2005, the NFPA's NEC allows transformerless, or non-galvanically isolated, inverters by removing the requirement that all solar electric systems be negative grounded and specifying new safety requirements. Amendments to VDE 0126-1-1 and IEC 6210 define the design and procedures needed for such systems: primarily, ground current measurement and DC to grid isolation tests.
Manufacturers datasheets for their inverters usually include the following data:
An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.
A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.
A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.
A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.
The utility frequency, (power) line frequency or mains frequency is the nominal frequency of the oscillations of alternating current (AC) in a wide area synchronous grid transmitted from a power station to the end-user. In large parts of the world this is 50 Hz, although in the Americas and parts of Asia it is typically 60 Hz. Current usage by country or region is given in the list of mains electricity by country.
A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.
A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.
A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.
Power electronics is the application of electronics to the control and conversion of electric power.
A welding power supply is a device that provides or modulates an electric current to perform arc welding. There are multiple arc welding processes ranging from Shielded Metal Arc Welding (SMAW) to inert shielding gas like Gas metal arc welding (GMAW) or Gas tungsten arc welding (GTAW). Welding power supplies primarily serve as devices that allow a welder to exercise control over whether current is alternating current (AC) or direct current (DC), as well as the amount of current and voltage.
A variable-frequency drive is a type of AC motor drive that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation.
Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.
An engine–generator is the combination of an electrical generator and an engine mounted together to form a single piece of equipment. This combination is also called an engine–generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator. An engine–generator may be a fixed installation, part of a vehicle, or made small enough to be portable.
A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. Many utility-scale PV systems use tracking systems that follow the sun's daily path across the sky to generate more electricity than fixed-mounted systems.
Nominal power is the nameplate capacity of photovoltaic (PV) devices, such as solar cells, modules and systems. It is determined by measuring the electric current and voltage in a circuit, while varying the resistance under precisely defined conditions. The nominal power is important for designing an installation in order to correctly dimension its cabling and converters.
An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power transmission to carry power over long distances, and finally electric power distribution to customers. In that last step, voltage is stepped down again to the required service voltage. Power stations are typically built close to energy sources and far from densely populated areas. Electrical grids vary in size and can cover whole countries or continents. From small to large there are microgrids, wide area synchronous grids, and super grids.
The DC distribution system has been proposed, as a replacement for the present AC power distribution system for ships with electric propulsion.
A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters battery storage systems, charge controllers, monitoring systems, racking and mounting systems, energy management systems, net metering systems, disconnect switches, grounding equipment, protective devices, combiner boxes, weatherproof enclosures and other electrical accessories.
This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.
The electrical power grid that powers Northern America is not a single grid, but is instead divided into multiple wide area synchronous grids. The Eastern Interconnection and the Western Interconnection are the largest. Three other regions include the Texas Interconnection, the Quebec Interconnection, and the Alaska Interconnection. Each region delivers power at a nominal 60 Hz frequency.