Grid-tied electrical system

Last updated

A grid-tied electrical system, also called tied to grid or grid tie system, is a semi-autonomous electrical generation or grid energy storage system which links to the mains to feed excess capacity back to the local mains electrical grid. When insufficient electricity is available, electricity drawn from the mains grid can make up the shortfall. Conversely when excess electricity is available, it is sent to the mains grid. When the Utility or network operator restricts the amount of energy that goes into the grid, it is possible to prevent any input into the grid by installing Export Limiting devices.

Contents

When batteries are used for storage, the system is called battery-to-grid (B2G), which includes vehicle-to-grid (V2G).

How it works

Grid-tied Inverter Onduleur pour photovoltaique.jpg
Grid-tied Inverter

Direct Current (DC) electricity from sources such as hydro, wind or solar is passed to an inverter which is grid tied. The inverter monitors the alternating current mains supply frequency and generates electricity that is phase matched to the mains. When the grid fails to accept power during a "black out", most inverters can continue to provide courtesy power.

Battery-to-grid

A key concept of this system is the possibility of creating an electrical micro-system that is not dependent on the grid-tie to provide a high level quality of service. If the mains supply of the region is unreliable, the local generation system can be used to power important equipment.

Battery-to-grid can also spare the use of fossil fuel power plants to supply energy during peak loads on the public electric grid. Regions that charge based on time of use metering may benefit by using stored battery power during prime time.

Environmentally friendly

Local generation can be from an environmentally friendly source such as pico hydro, solar panels or a wind turbine. Individuals can choose to install their own system if an environmentally friendly mains provider is not available in their location.

Small scale start

A micro generation facility can be started with a very small system such as a home wind power generation, photovoltaic (solar cells) generation, or micro combined heat and power (Micro-CHP) [1] system.

Sell to and buy from mains

List of countries or regions that legally allow grid-tied electrical systems

See also

Related Research Articles

Electricity generation Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy is electrical generation and storage performed by a variety of small, grid-connected or distribution system connected devices referred to as distributed energy resources (DER).

Solar inverter

A solar inverter or PV inverter, is a type of electrical converter which converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

Grid energy storage collection of methods used to energy storage on a large scale within an electrical power grid

Grid energy storage is a collection of methods used for energy storage on a large scale within an electrical power grid. Electrical energy is stored during times when electricity is plentiful and inexpensive or when demand is low, and later returned to the grid when demand is high, and electricity prices tend to be higher.

Off-the-grid or off-grid is a characteristic of buildings and a lifestyle designed in an independent manner without reliance on one or more public utilities. The term "off-the-grid" traditionally refers to not being connected to the electrical grid, but can also include other utilities like water, gas, and sewer systems, and can scale from residential homes to small communities. Off-the-grid living allows for buildings and people to be self-sufficient, which is advantageous in isolated locations where normal utilities cannot reach and is attractive to those who want to reduce environmental impact and cost of living. Generally, an off-grid building must be able to supply energy and potable water for itself, as well as manage food, waste and wastewater.

Microgeneration small-scale generation of heat and electric power

Microgeneration is the small-scale generation of heat and electric power by individuals, small businesses and communities to meet their own needs, as alternatives or supplements to traditional centralized grid-connected power. Although this may be motivated by practical considerations, such as unreliable grid power or long distance from the electrical grid, the term is mainly used currently for environmentally conscious approaches that aspire to zero or low-carbon footprints or cost reduction. It differs from micropower in that it is principally concerned with fixed power plants rather than for use with mobile devices.

Solar panel panel which absorbs sunlight to generate electrical energy

The term solar panel is used colloquially for a photo-voltaic (PV) module.

Stand-alone power system

A stand-alone power system, also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of electricity generation, energy storage, and regulation.

A load following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load following plants are typically in-between base load and peaking power plants in efficiency, speed of start up and shut down, construction cost, cost of electricity and capacity factor.

Grid-tie inverter apparatus to convert DC electrical (solar, wind) energy to AC and deliver it back to the grid

A grid-tie inverter converts direct current (DC) into an alternating current (AC) suitable for injecting into an electrical power grid, normally 120 V RMS at 60 Hz or 240 V RMS at 50 Hz. Grid-tie inverters are used between local electrical power generators: solar panel, wind turbine, hydro-electric, and the grid.

Solar power conversion of energy from sunlight into electricity

Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight into a small beam. Photovoltaic cells convert light into an electric current using the photovoltaic effect.

Photovoltaic system power system designed to supply usable solar power

A photovoltaic system, also PV system or solar power system, is a power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and convert sunlight into electricity, a solar inverter to convert the output from direct to alternating current, as well as mounting, cabling, and other electrical accessories to set up a working system. It may also use a solar tracking system to improve the system's overall performance and include an integrated battery solution, as prices for storage devices are expected to decline. Strictly speaking, a solar array only encompasses the ensemble of solar panels, the visible part of the PV system, and does not include all the other hardware, often summarized as balance of system (BOS). As PV systems convert light directly into electricity, they are not to be confused with other solar technologies, such as concentrated solar power or solar thermal, used for heating and cooling.

Rooftop photovoltaic power station type of photovoltaic system

A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories.

Grid-connected photovoltaic power system

A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power conditioning unit and grid connection equipment. They range from small residential and commercial rooftop systems to large utility-scale solar power stations. Unlike stand-alone power systems, a grid-connected system rarely includes an integrated battery solution, as they are still very expensive. When conditions are right, the grid-connected PV system supplies the excess power, beyond consumption by the connected load, to the utility grid.

Variable renewable energy type of renewable energy source

Variable renewable energy (VRE) is a renewable energy source that is non-dispatchable due to its fluctuating nature, like wind power and solar power, as opposed to a controllable renewable energy source such as dammed hydroelectricity, or biomass, or a relatively constant source such as geothermal power.

The following outline is provided as an overview of and topical guide to solar energy:

Intelligent hybrid inverter

An intelligent hybrid inverter or smart grid inverter is a trending generation of inverter for solar applications using renewable energy for home consumption, especially for solar photovoltaic installations. Some see this as a new technology, however in some parts of the world the application of such products has been around since the 1990s. Electricity from solar panels is generated only during the day, with peak generation around midday. Generation fluctuates and may not be synchronized with a load's electricity consumption. To overcome this gap between what is produced and what is consumed during the evening, when there is no solar electricity production, it is necessary to store energy for later use and manage energy storage and consumption with an intelligent hybrid inverter. With the development of systems that include renewable energy sources and rising electricity prices, private companies and research laboratories have developed smart inverters for synchronizing energy production and consumption.

Solar hybrid power systems combination of solar power and other power generation or storage

Solar hybrid power systems are hybrid power systems that combine solar power from a photovoltaic system with another power generating energy source. A common type is a photovoltaic diesel hybrid system, combining photovoltaics (PV) and diesel generators, or diesel gensets, as PV has hardly any marginal cost and is treated with priority on the grid. The diesel gensets are used to constantly fill in the gap between the present load and the actual generated power by the PV system.

Home energy storage

Home energy storage devices store electricity locally, for later consumption. Electrochemical energy storage products, also known as "Battery Energy Storage System", at their heart are rechargeable batteries, typically based on lithium-ion or lead-acid controlled by computer with intelligent software to handle charging and dischargning cycles. Companies are also developing smaller flow battery technology for home use. As a local energy storage technologies for home use, they are smaller relatives of battery-based grid energy storage and support the concept of distributed generation. When paired with on-site generation, they can virtually eliminate blackouts in an off-the-grid lifestyle.

A mini-grid is an off-grid electricity distribution network involving small-scale electricity generation. Often conflated with microgrids, a mini-grid is sometimes defined as having a power rating less than 11kW and as being disconnected from utility-scale grids. The United Nations Framework Convention on Climate Change (UNFCCC) defines a mini-grid with a power rating below 15MW and disconnected from larger electric grids. Mini-grids are used as a cost-effective solution for electrifying rural communities where a grid connection is challenging in terms of transmission and cost for the end user population density.

References

  1. Du, Ruoyang; Robertson, Paul (2017). "Cost Effective Grid-Connected Inverter for a Micro Combined Heat and Power System". IEEE Transactions on Industrial Electronics. 64 (7): 5360. doi:10.1109/TIE.2017.2677340. ISSN   0278-0046.
  2. "Normativa para Usuarios Finales Productores de Energía"
  3. "Directive 2001/77/EC"
  4. "Public Utility Authority" Photo-voltaic guidelines
  5. "Official Newspaper of the Federation of Mexico" Contract of Interconnection of Photovoltaic Systems updated 27 June 2007 (in Spanish)
  6. "Federal Commission of Electricity" Renewable Energy guidelines Archived 2010-09-14 at the Wayback Machine updated 3 September 2010 (in Spanish)
  7. "Energy Market Authority of Singapore": "Handbook for Photo-voltaic (PV) Systems" Archived 2007-10-25 at the Wayback Machine updated 10 September 2007

Distributed generation Battery (electricity)