Switchgear

Last updated

High-voltage switchgear High-voltage switchgear 01.jpg
High-voltage switchgear
A section of a large switchgear panel. IndustrialSwitchgear.JPG
A section of a large switchgear panel.
Tram switchgear Tram switchgear.JPG
Tram switchgear
This circuit breaker uses both SF6 and air as insulation. Hybrid switchgear.jpg
This circuit breaker uses both SF6 and air as insulation.

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Contents

The earliest central power stations used simple open knife switches, mounted on insulating panels of marble or asbestos. Power levels and voltages rapidly escalated, making opening manually operated switches too dangerous for anything other than isolation of a de-energized circuit. Oil-filled switchgear equipment allows arc energy to be contained and safely controlled. By the early 20th century, a switchgear line-up would be a metal-enclosed structure with electrically operated switching elements using oil circuit breakers. Today, oil-filled equipment has largely been replaced by air-blast, vacuum, or SF6 equipment, allowing large currents and power levels to be safely controlled by automatic equipment.

High-voltage switchgear was invented at the end of the 19th century for operating motors and other electric machines. [1] The technology has been improved over time and can now be used with voltages up to 1,100 kV. [2]

Typically, switchgear in substations is located on both the high- and low-voltage sides of large power transformers. The switchgear on the low-voltage side of the transformers may be located in a building, with medium-voltage circuit breakers for distribution circuits, along with metering, control, and protection equipment. For industrial applications, a transformer and switchgear line-up may be combined in one housing, called a unitized substation (USS). According to the latest research by Visiongain, a market research company, the worldwide switchgear market is expected to achieve $152.5 billion by 2029 at a CAGR of 5.9%. Growing investment in renewable energy and enhanced demand for safe and secure electrical distribution systems are expected to generate the increase. [3]

Components

A switchgear assembly has two types of components:

Functions

One of the basic functions of switchgear is protection, which is interruption of short-circuit and overload fault currents while maintaining service to unaffected circuits. Switchgear also provides isolation of circuits from power supplies. Switchgear is further used to enhance system availability by allowing more than one source to feed a load.

History

Early switchgear (about 1910) Schaltanlage um1910.jpg
Early switchgear (about 1910)

Switchgear is as old as electricity generation. The first models were very primitive: all components were simply fixed to a wall. Later they were mounted on wooden panels. For reasons of fire protection, the wood was replaced by slate or marble. This led to a further improvement, because the switching and measuring devices could be attached to the front, while the wiring was on the back. [4]

Housing

Switchgear for lower voltages may be entirely enclosed within a building. For higher voltages (over about 66 kV), switchgear is typically mounted outdoors and insulated by air, although this requires a large amount of space. Gas-insulated switchgear saves space compared with air-insulated equipment, although the equipment cost is higher. Oil insulated switchgear presents an oil spill hazard.

Switches may be manually operated or have motor drives to allow for remote control.

Circuit breaker types

A switchgear may be a simple open-air isolator switch or it may be insulated by some other substance. An effective although more costly form of switchgear is the gas-insulated switchgear (GIS), where the conductors and contacts are insulated by pressurized sulfur hexafluoride gas (SF6). Other common types are oil or vacuum insulated switchgear.

The combination of equipment within the switchgear enclosure allows them to interrupt fault currents of thousands of amps. A circuit breaker (within a switchgear enclosure) is the primary component that interrupts fault currents. The quenching of the arc when the circuit breaker pulls apart the contacts (disconnects the circuit) requires careful design. Circuit breakers fall into these six types:

Oil

Cutaway model of an oil-filled high-voltage circuit breaker TMW 50981 Schnittmodell Hochspannung-Leistungschalter HPF500F.jpg
Cutaway model of an oil-filled high-voltage circuit breaker

Oil circuit breakers rely upon the vaporization of some of the oil to blast a jet of oil along the arc's path. The vapor released by the arcing consists of hydrogen gas. Mineral oil has better insulating properties than air. Whenever there is a separation of current-carrying contacts in the oil, the arc in the circuit breaker is initialized at the moment of separation of contacts, and due to this arc the oil is vaporized and decomposed to mostly hydrogen gas and ultimately creates a hydrogen bubble around the electric arc. This highly compressed gas bubble around the turn prevents the re-striking of the arc after the current reaches zero crossing of the cycle. The oil circuit breaker is one of the oldest types of circuit breakers.

Air

Air circuit breakers may use compressed air (puff) or the magnetic force of the arc itself to elongate the arc. As the length of the sustainable arc is dependent on the available voltage, the elongated arc will eventually exhaust itself. Alternatively, the contacts are rapidly swung into a small sealed chamber, the escaping of the displaced air thus blowing out the arc.

Circuit breakers are usually able to terminate all current flow very quickly: typically between 30 ms and 150 ms depending upon the age and construction of the device.

Gas

Gas (SF6) circuit breakers sometimes stretch the arc using a magnetic field, and then rely upon the dielectric strength of the SF6 gas to quench the stretched arc.

Hybrid

Hybrid switchgear is a type which combines the components of traditional air-insulated switchgear (AIS) and SF6 gas-insulated switchgear (GIS) technologies. It is characterized by a compact and modular design, which encompasses several different functions in one module.

Vacuum

Circuit breakers with vacuum interrupters have minimal arcing characteristics (as there is nothing to ionize other than the contact material), so the arc quenches when it is stretched by a small amount (<2–8 mm). Near zero current the arc is not hot enough to maintain a plasma, and current ceases; the gap can then withstand the rise of voltage. Vacuum circuit breakers are frequently used in modern medium-voltage switchgear to 40,500 volts. Unlike the other types, they are inherently unsuitable for interrupting DC faults. The reason vacuum circuit breakers are unsuitable for breaking high DC voltages is that with DC there is no "current zero" period. The plasma arc can feed itself by continuing to gasify the contact material.

Carbon dioxide

Breakers that use carbon dioxide as the insulating and arc extinguishing medium work on the same principles as a sulfur hexafluoride (SF6) breaker. Because SF6 is a greenhouse gas more potent than CO2, by switching from SF6 to CO2 it is possible to reduce the greenhouse gas emissions by 10 tons during the product lifecycle. [5]

Protective circuitry

Circuit breakers and fuses

Circuit breakers and fuses disconnect when current exceeds a predetermined safe level. However they cannot sense other critical faults, such as unbalanced currents—for example, when a transformer winding contacts ground. By themselves, circuit breakers and fuses cannot distinguish between short circuits and high levels of electrical demand.

Merz-Price circulating current scheme

Differential protection depends upon Kirchhoff's current law, which states that the sum of currents entering or leaving a circuit node must equal zero. Using this principle to implement differential protection, any section of a conductive path may be considered a node. The conductive path could be a transmission line, a winding of a transformer, a winding in a motor, or a winding in the stator of an alternator. This form of protection works best when both ends of the conductive path are physically close to each other. This scheme was invented in Great Britain by Charles Hesterman Merz and Bernard Price. [6]

Two identical current transformers are used for each winding of a transformer, stator, or other device. The current transformers are placed around opposite ends of a winding. The current through both ends should be identical. A protective relay detects any imbalance in currents, and trips circuit breakers to isolate the device. In the case of a transformer, the circuit breakers on both the primary and secondary would open.

Distance relays

A short circuit at the end of a long transmission line appears similar to a normal load, because the impedance of the transmission line limits the fault current. A distance relay detects a fault by comparing the voltage and current on the transmission line. A large current along with a voltage drop indicates a fault.

Classification

Several different classifications of switchgear can be made: [7]

A single line-up may incorporate several different types of devices, for example, air-insulated bus, vacuum circuit breakers, and manually operated switches may all exist in the same row of cubicles.

Ratings, design, specifications and details of switchgear are set by a multitude of standards. In North America mostly IEEE and ANSI standards are used, much of the rest of the world uses IEC standards, sometimes with local national derivatives or variations.

Safety

245 kV circuit breaker in air insulated substation Disjoncteurs 245kV.jpg
245 kV circuit breaker in air insulated substation
420 kV gas insulated switchgear GIS 420kV.jpg
420 kV gas insulated switchgear

To help ensure safe operation sequences of switchgear, trapped-key interlocking provides predefined scenarios of operation. For example, if only one of two sources of supply are permitted to be connected at a given time, the interlock scheme may require that the first switch must be opened to release a key that will allow closing the second switch. Complex schemes are possible.

Indoor switchgear can also be type tested for internal arc containment (e.g., IEC 62271-200). This test is important for user safety as modern switchgear is capable of switching large currents. [14]

Switchgear is often inspected using thermal imaging to assess the state of the system and predict failures before they occur. Other methods include partial discharge (PD) testing, using either fixed or portable testers, and acoustic emission testing using surface-mounted transducers (for oil equipment) or ultrasonic detectors used in outdoor switchyards. Temperature sensors fitted to cables to the switchgear can permanently monitor temperature build-up. SF6 equipment is invariably fitted with alarms and interlocks to warn of loss of pressure, and to prevent operation if the pressure falls too low.

The increasing awareness of dangers associated with high fault levels has resulted in network operators specifying closed-door operations for earth switches and racking breakers. Many European power companies have banned operators from switch rooms while operating. Remote racking systems are available which allow an operator to rack switchgear from a remote location without the need to wear a protective arc flash hazard suit. Switchgear systems require continuous maintenance and servicing to remain safe to use and fully optimized to provide such high voltages. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

<span class="mw-page-title-main">Switch</span> Electrical component that can break an electrical circuit

In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">Fuse (electrical)</span> Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated, it is an open circuit, and must be replaced or rewired, depending on its type.

<span class="mw-page-title-main">Electric switchboard</span> A piece of equipment that distributes electric power

An electric switchboard is a piece of equipment that distributes electric power from one or more sources of supply to several smaller load circuits. It is an assembly of one or more panels, each of which contains switching devices for the protection and control of circuits fed from the switchboard. Several manufacturers make switchboards used in industry, commercial buildings, telecommunication facilities, oil and gas plants, data centers, health care, and other buildings, and onboard large ships. A switchboard is divided into different interconnected sections, generally consisting of a main section and a distribution section. These two sections are sometimes replaced by a combination section, which is a section that can fulfill the roles of both of the aforementioned sections. Switchboards can also sometimes come with an auxiliary section that is used to house devices that cannot be housed in the same section as other devices.

<span class="mw-page-title-main">High voltage</span> Electrical potential that is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Recloser</span> Electricity distribution networks circuit breakers

In electric power distribution, automatic circuit reclosers (ACRs) are a class of switchgear designed for use on overhead electricity distribution networks to detect and interrupt transient faults. Also known as reclosers or autoreclosers, ACRs are essentially rated circuit breakers with integrated current and voltage sensors and a protection relay, optimized for use as a protection asset. Commercial ACRs are governed by the IEC 62271-111/IEEE Std C37.60 and IEC 62271-200 standards. The three major classes of operating maximum voltage are 15.5 kV, 27 kV and 38 kV.

In electric power distribution and transmission, a Buchholz relay is a safety device mounted on some oil-filled power transformers and reactors, equipped with an external overhead oil reservoir called a "conservator".

<span class="mw-page-title-main">Arc flash</span> Heat and light produced during an electrical arc fault

An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.

<span class="mw-page-title-main">High-voltage switchgear</span>

High-voltage switchgear is any switchgear used to connect or disconnect a part of a high-voltage power system. This equipment is essential for the protection and safe operation, without interruption, of a high voltage power system, and is important because it is directly linked to the quality of the electricity supply.

<span class="mw-page-title-main">Isolated-phase bus</span>

In electrical engineering, isolated-phase bus (IPB), also known as phase-isolated bus (PIB) in some countries, is a method of construction for circuits carrying very large currents, typically between a generator and its step-up transformer in a steam or large hydroelectric power plant.

<span class="mw-page-title-main">Electric power system</span> Network of electrical component deployed to generate, transmit & distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.

<span class="mw-page-title-main">Sulfur hexafluoride circuit breaker</span> Switching device used in high-voltage power grids

Sulfur hexafluoride circuit breakers protect electrical power stations and distribution systems by interrupting electric currents, when tripped by a protective relay. Instead of oil, air, or a vacuum, a sulfur hexafluoride circuit breaker uses sulfur hexafluoride (SF6) gas to cool and quench the arc on opening a circuit. Advantages over other media include lower operating noise and no emission of hot gases, and relatively low maintenance. Developed in the 1950s and onward, SF6 circuit breakers are widely used in electrical grids at transmission voltages up to 800 kV, as generator circuit breakers, and in distribution systems at voltages up to 35 kV.

A hybrid switchgear is one that combines the components of traditional air-insulated switchgear (AIS) and SF6 gas-insulated switchgear (GIS) technologies. It is characterized by a compact and modular design, which encompasses several different functions in one module.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

<span class="mw-page-title-main">Vacuum interrupter</span>

In electrical engineering, a vacuum interrupter is a switch which uses electrical contacts in a vacuum. It is the core component of medium-voltage circuit-breakers, generator circuit-breakers, and high-voltage circuit-breakers. Separation of the electrical contacts results in a metal vapour arc, which is quickly extinguished. Vacuum interrupters are widely used in utility power transmission systems, power generation unit, and power-distribution systems for railways, arc furnace applications, and industrial plants.

In an electrical power distribution system, a ring main unit (RMU) is a factory assembled, metal enclosed set of switchgear used at the load connection points of a ring-type distribution network. It includes in one unit two switches that can connect the load to either or both main conductors, and a fusible switch or circuit breaker and switch that feed a distribution transformer. The metal enclosed unit connects to the transformer either through a bus throat of standardized dimensions, or else through cables and is usually installed outdoors. Ring main cables enter and leave the cabinet. This type of switchgear is used for medium-voltage power distribution, from 7200 volts to about 36000 volts.

<span class="mw-page-title-main">C4-FN</span> New gas and mixture of gases for high voltage switchgear

C4-FN (C4-fluoronitrile, C4FN) is a perfluorinated compound developed as a high-dielectric gas for high-voltage switchgear. It has the structure (CF3)2CFC≡N, which can be described as perfluoroisobutyronitrile, falling under the category of PFAS, or per- and polyfluoroalkyl substances.

References

  1. British Pattern GB 20069 Improvements in Apparatus for Controlling the Application or Use of Electric Currents of High Tension and Great Quantity in 1893, on espacenet.com
  2. Lin Jiming et al., Transient characteristics of 1 100 kV circuit-breakers, International Symposium on International Standards for Ultra High Voltage, Beijing, Juillet 2007.
  3. ""The worldwide switchgear market is expected to achieve $152.5bn by 2029", says Visiongain report". Visiongain. 5 September 2019. Retrieved 6 September 2019.
  4. (German) Allgemeine Elektricitäts-Gesellschaft (ed) AEG Hilfsbuch für elektrische Licht- und Kraftanlagen 6th Ed., W. Girardet, Essen 1953
  5. "Switzerland : ABB breaks new ground with environment friendly high-voltage circuit breaker". Archived from the original on 24 December 2019. Retrieved 9 July 2013.
  6. Robert Monro Black (January 1983). The History of Electric Wires and Cables. IET. pp. 101–. ISBN   978-0-86341-001-7.
  7. Robert W. Smeaton (ed) Switchgear and Control Handbook 3rd Ed., McGraw Hill, New York 1997 ISBN   0-07-058451-6
  8. IEEE Std C37.20.2-1999. IEEE Standard for Metal-Clad Switchgear.
  9. IEEE Std C37.100-1992. IEEE Standard Definitions for Power Switchgear.
  10. "Metal-Clad vs Metal-Enclosed". Electrical Engineers and Master Electricians Portal. 4 November 2008. Archived from the original on 27 August 2016. Retrieved 28 June 2016.
  11. IEC Standard EN 60439 part 1 Table 6A
  12. (in French) Norme CEI 60265-1 Interrupteurs pour tension assignée supérieure à 1 kV et inférieure à 52 kV Archived September 30, 2007, at the Wayback Machine
  13. (in French) Norme CEI 60265-2 Interrupteurs pour tension assignée supérieure à 52 kV [ dead link ]
  14. "Medium Voltage Arc Fault Containment" (PDF). Siemens . Archived from the original on 18 March 2009. Retrieved 29 July 2023.
  15. "Switchgear Systems and Services". johnsonphillips.co.uk. Retrieved 15 May 2018.