Isomorphism (crystallography)

Last updated
Forsterite Forsterite.jpg
Forsterite

In chemistry, isomorphism has meanings both at the level of crystallography and at a molecular level. In crystallography, crystals are isomorphous if they have identical symmetry and if the atomic positions can be described with a set of parameters (unit cell dimensions and fractional coordinates) whose numerical values differ only slightly. [1]

Contents

Molecules are isomorphous if they have similar shapes. The coordination complexes tris(acetylacetonato)iron (Fe(acac)3) and tris(acetylacetonato)aluminium (Al(acac)3) are isomorphous. These compounds, both of D3 symmetry have very similar shapes, as determined by bond lengths and bond angles. Isomorphous compounds give rise to isomorphous crystals and form solid solutions. [2] Historically, crystal shape was defined by measuring the angles between crystal faces with a goniometer. Whereas crystals of Fe(acac)3 are deep red and crystals of Al(acac)3 are colorless, a solid solution of the two, i.e. Fe1−xAlx(acac)3 will be deep or pale pink depending on the Fe/Al ratio, x.

Double sulfates, such as Tutton's salt, with the generic formula MI2MII(SO4)2.6H2O, where MI is an alkali metal and MII is a divalent ion of Mg, Mn, Fe, Co, Ni, Cu or Zn, form a series of isomorphous compounds which were important in the nineteenth century in establishing the correct atomic weights of the transition elements. Alums, such as KAl(SO4)2.12H2O, are another series of isomorphous compounds, though there are three series of alums with similar external structures, but slightly different internal structures. Many spinels are also isomorphous.

In order to form isomorphous crystals two substances must have the same chemical formulation (i.e., atoms in the same ratio), they must contain atoms which have corresponding chemical properties and the sizes of corresponding atoms should be similar. These requirements ensure that the forces within and between molecules and ions are approximately similar and result in crystals that have the same internal structure. Even though the space group is the same, the unit cell dimensions will be slightly different because of the different sizes of the atoms involved.

Mitscherlich's law

Mitscherlich's law of isomorphism, or the law of isomorphism, is an approximate law suggesting that crystals composed of the same number of similar elements tend to demonstrate isomorphism. [3]

Mitscherlich's law is named for German chemist Eilhard Mitscherlich, [4] who formulated the law and published it between 1819 and 1823. [5]

According to Ferenc Szabadváry, one of the clues that helped Berzelius determine the atomic weights of the elements was "the discovery of Mitscherlich that compounds which contain the same number of atoms and have similar structures, exhibit similar crystal forms (isomorphism)." [6]

See also

Related Research Articles

<span class="mw-page-title-main">Crystal</span> Solid material with highly ordered microscopic structure

A crystal or crystalline solid is a solid material whose constituents are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification.

<span class="mw-page-title-main">X-ray crystallography</span> Technique used for determining crystal structures and identifying mineral compounds

X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the positions of the atoms in the crystal can be determined, as well as their chemical bonds, crystallographic disorder, and various other information.

<span class="mw-page-title-main">Zinc sulfate</span> Chemical compound

Zinc sulfate describes a family of inorganic compounds with the formula ZnSO4(H2O)x. All are colorless solids. The most common form includes water of crystallization as the heptahydrate, with the formula ZnSO4·7H2O. As early as the 16th century it was prepared on the large scale, and was historically known as "white vitriol" (the name was used, for example, in 1620s by the collective writing under the pseudonym of Basil Valentine). Zinc sulfate and its hydrates are colourless solids.

In inorganic chemistry and materials chemistry, a ternary compound or ternary phase is a chemical compound containing three different elements.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

A solid solution, a term popularly used for metals, is a homogeneous mixture of two different kinds of atoms in solid state and having a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solution" is used to describe the intimate mixing of components at the atomic level and distinguishes these homogeneous materials from physical mixtures of components. Two terms are mainly associated with solid solutions – solvents and solutes, depending on the relative abundance of the atomic species.

<span class="mw-page-title-main">Eilhard Mitscherlich</span> German chemist (1794–1863)

Eilhard Mitscherlich was a German chemist, who is perhaps best remembered today for his discovery of the phenomenon of crystallographic isomorphism in 1819.

<span class="mw-page-title-main">Double salt</span> Type of salt

A double salt is a salt that contains two or more different cations or anions. Examples of double salts include alums (with the general formula MIMIII(SO4)2·12H2O) and Tutton's salts (with the general formula (MI)2MII(SO4)2·6H2O). Other examples include potassium sodium tartrate, ammonium iron(II) sulfate (Mohr's salt), potassium uranyl sulfate (used to discover radioactivity) and bromlite BaCa(CO3)2. The fluorocarbonates contain fluoride and carbonate anions. Many coordination complexes form double salts.

Indium(III) sulfate (In2(SO4)3) is a sulfate salt of the metal indium. It is a sesquisulfate, meaning that the sulfate group occurs 11/2 times as much as the metal. It may be formed by the reaction of indium, its oxide, or its carbonate with sulfuric acid. An excess of strong acid is required, otherwise insoluble basic salts are formed. As a solid indium sulfate can be anhydrous, or take the form of a pentahydrate with five water molecules or a nonahydrate with nine molecules of water. Indium sulfate is used in the production of indium or indium containing substances. Indium sulfate also can be found in basic salts, acidic salts or double salts including indium alum.

<span class="mw-page-title-main">Tin(II) sulfate</span> Chemical compound

Tin(II) sulfate (SnSO4) is a chemical compound. It is a white solid that can absorb enough moisture from the air to become fully dissolved, forming an aqueous solution; this property is known as deliquescence. It can be prepared by a displacement reaction between metallic tin and copper(II) sulfate:

<span class="mw-page-title-main">Ammonium iron(II) sulfate</span> Chemical compound

Ammonium iron(II) sulfate, or Mohr's salt, is the inorganic compound with the formula (NH4)2Fe(SO4)2(H2O)6. Containing two different cations, Fe2+ and NH+4, it is classified as a double salt of ferrous sulfate and ammonium sulfate. It is a common laboratory reagent because it is readily crystallized, and crystals resist oxidation by air. Like the other ferrous sulfate salts, ferrous ammonium sulfate dissolves in water to give the aquo complex [Fe(H2O)6]2+, which has octahedral molecular geometry. Its mineral form is mohrite.

Isomorphous replacement (IR) is historically the most common approach to solving the phase problem in X-ray crystallography studies of proteins. For protein crystals this method is conducted by soaking the crystal of a sample to be analyzed with a heavy atom solution or co-crystallization with the heavy atom. The addition of the heavy atom (or ion) to the structure should not affect the crystal formation or unit cell dimensions in comparison to its native form, hence, they should be isomorphic.

<span class="mw-page-title-main">Ruthenium(III) acetylacetonate</span> Chemical compound

Ruthenium(III) acetylacetonate is a coordination complex with the formula Ru(O2C5H7)3. O2C5H7 is the ligand called acetylacetonate. This compound exists as a dark violet solid that is soluble in most organic solvents. It is used as a precursor to other compounds of ruthenium.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

Isostructural chemical compounds have similar chemical structures. "Isomorphous" when used in the relation to crystal structures is not synonymous: in addition to the same atomic connectivity that characterises isostructural compounds, isomorphous substances crystallise in the same space group and have the same unit cell dimensions. The IUCR definition used by crystallographers is:

Two crystals are said to be isostructural, if they have the same structure, but not necessarily the same cell dimensions nor the same chemical composition, and with a 'comparable' variability in the atomic coordinates to that of the cell dimensions and chemical composition. For instance, calcite CaCO3, sodium nitrate NaNO3 and iron borate FeBO3 are isostructural. One also speaks of isostructural series, or of isostructural polymorphs or isostructural phase transitions. The term isotypic is synonymous with isostructural.

<span class="mw-page-title-main">Aluminium acetylacetonate</span> Chemical compound

Aluminium acetylacetonate, also referred to as Al(acac)3, is a coordination complex with formula Al(C5H7O2)3. This aluminium complex with three acetylacetone ligands is used in research on Al-containing materials. The molecule has D3 symmetry, being isomorphous with other octahedral tris(acetylacetonate)s.

<span class="mw-page-title-main">Dysprosium acetylacetonate</span> Chemical compound

Dysprosium acetylacetonate is a chemical compound of dysprosium with formula Dy(C5H7O2)3(H2O)n.

<span class="mw-page-title-main">Gallium acetylacetonate</span> Chemical compound

Gallium acetylacetonate, also referred to as Ga(acac)3, is a coordination complex with formula Ga(C5H7O2)3. This gallium complex with three acetylacetonate ligands is used in research. The molecule has D3 symmetry, being isomorphous with other octahedral tris(acetylacetonate)s.

<span class="mw-page-title-main">Tris(acetylacetonato)cobalt(III)</span> Chemical compound

Tris(acetylacetonato)cobalt(III) is the coordination complex with the formula Co(C5H7O2)3. Often abbreviated Co(acac)3, it is a green, diamagnetic solid that is soluble in organic solvents, but not in water. Owing to its solubility in organic solvents, tris(acetylacetonato)cobalt(III) is used to produce homogeneous catalysts by reduction.

<span class="mw-page-title-main">Vitaly Khlopin</span> Russian chemist (1890–1950)

Vitaly Grigorievich Khlopin was a Russian and Soviet scientist- radiochemist, professor, academician of the USSR Academy of Sciences (1939), Hero of Socialist Labour (1949), and director of the Radium Institute of the USSR Academy of Sciences (1939-1950). He was one of the founders of Soviet radiochemistry and radium industry, received the first domestic radium preparations (1921), one of the founders of the Radium Institute and leading participants in the atomic project and founder of the school of Soviet radiochemists.

References

  1. Girolami, Gregory (2015). X-Ray Crystallography. University Science Books. ISBN   978-1-891389-77-1.
  2. Wells, A.F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. ISBN   0-19-855370-6. pp 186186 in 3rd. edition
  3. "Mitscherlich, Eilhard". Complete Dictionary of Scientific Biography. Encyclopedia.com. 2008.
  4. Schutt Hans-Werner. (1997.) Eilhard Mitscherlich: Prince of Prussian Chemistry, Chemical Heritage Foundation. ISBN   9780841233454.
  5. Bernadette Bensaude-Vincent. (1996.) A History of Chemistry, Harvard University Press, p. 122. ISBN   9780674396593.
  6. Szabadváry, Ferenc; Svehla, trans., Gyula (1992). History of Analytical Chemistry. Yverdon, Switzerland: Gordon and Breach Science Publishers. p. 141. ISBN   978-2881245695 . Retrieved 12 March 2020.